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Abstract 
 

The presence of subtle but meaningful within-category sound differences has been 

documented  in  acoustic  and  articulatory  analyses  of  children’s  speech.  This  study  

explored visual analog scaling (VAS) to measure speech perception. Productions of 

word-initial /t/ and /k/ were recorded from a diverse group of 63 children aged 28 to 39 

months.  Adult  naïve  listeners  rated  productions  on  a  VAS.  Measures  of  children’s  

vocabulary, speech perception, executive function, home language environment, and 

maternal education level were collected. Robustness of the /t/-/k/ contrast was derived 

from adult VAS ratings for each talker. Speech accuracy, based on phonetic 

transcriptions was calculated. Listeners differentiated transcription categories, including 

intermediate categories, using the VAS. Listeners had variable levels of intra-rater 

reliability, and set effects were present. Transcription accuracy and robustness of contrast 

were closely related, but robustness of contrast highlighted differences between children 

with high accuracy. Vocabulary measures predicted both robustness of contrast and 

transcribed accuracy.  
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1 Introduction 

Phonological knowledge is multifaceted. It involves knowledge of the way that 

sounds are produced, how they are perceived, and ways that variations in sound are used 

to convey meaning in a language (Munson, Edwards & Beckman, 2005). Studies of each 

of these areas can yield valuable information about phonological development and more 

general language development. The current study focused on just one of these facets, 

sound production. This choice was made for a variety of reasons. Both standardized and 

informal measures of phoneme production accuracy are thought to have especially high 

ecological validity, as they are seen as a measures of what others observe the child to do 

when speaking. Such measures are widely  understood  to  represent  a  child’s  speech  and  

language development in both clinical and general settings (Bleile, 2002; Khan, 2002; 

Tyler, & Tolbert, 2002). Production accuracy can be measured through a variety of 

methods, including listener perception, articulatory analysis, and acoustic analysis. Using 

these techniques in tandem provides the opportunity for cross-validation of acoustic, 

articulatory, and perceptual measures. 

The current study investigated the development of the production of /t/ and /k/ in 

children aged 28 to 39 months. For many children, adult-like production of these sounds 

emerges but is not mastered during this interval (Smit, Hand, Freilinger, Bernthal, & 

Bird, 1990). The specific sound contrast was chosen because it is commonly produced in 

error in younger typically developing children and in older children with speech sound 

disorders. English speaking children may tend to produce errors on the /k/ phoneme that 

resemble correct production of /t/ (Beckman, Munson, & Edwards, 2014; Stoel-Gammon, 
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1991).  

Both /t/ and /k/ are produced by stopping the outflow of air from the vocal tract 

with the a closure of the tongue at the alveolar ridge (/t/) or the soft palate (/k/), and then 

releasing the air in a burst. There are many possible places of articulation for the tongue 

between the anterior (alveolar) and posterior (velar) sites. This range in place of 

articulation correlates to a range in possible acoustic outputs for these attempts to 

produce /t/ or /k/ (Edwards, Gibbon, & Fourakis, 1997; Forrest, Weismer, Hodge, & 

Dinnsen, 1990). Indeed, studies using acoustic analysis or direct articulatory 

measurements have found that some children produce sounds that are intermediate 

between /t/ and /k/.  These within-category sound differences have been referred to as 

covert contrasts. Children who produce covert contrasts may use different articulatory 

gestures to produce /t/ and /k/, but the acoustic outputs that they produce are denoted by 

the same symbol in phonetic transcription (Forrest, Weismer, Hodge, Dinnsen, & Elbert, 

1990; Gierut & Dinnsen, 1986; Macken & Barton, 1980). 

Early evidence of covert contrasts was documented by Macken and Barton 

(1980). These researchers examined four children’s (aged one year, four months to one 

year, seven months at onset of study) productions of word-initial stop consonants (/p, b, t, 

d,  k,  ɡ/).  Recordings  were  made  every  two  weeks  over  an  eight  month  period.  All  

productions were transcribed, and four sets of productions from each child were analyzed 

acoustically. Voice onset time (VOT) of the word-initial consonant was calculated. VOT 

refers to the duration of the interval between the release of a stop consonant closure and 

the onset of vocal-fold vibration in the following vowel. In English, VOT is the primary 
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cue to the voicing contrast, with so-called  ‘voiced’  stops  being  produced  with  a  very  

short-lag VOT (i.e., voicing begins simultaneous with or shortly after the release of the 

consonant) and voiceless sounds being produced with a long-lag VOT (i.e., there is a 

substantial interval between the release of the stop consonant closure and the onset of 

voicing in the following sound). The timing of the release of a stop consonant and the 

onset of voicing in the following vowel is relatively unconstrained biomechanically, 

meaning that there are many possible values of VOT for a given consonant. The VOTs of 

children’s  productions  were  categorized  by  Macken  and  Barton  into  one  of  three  

categories. Category 1 data included productions for which there was no differentiation in 

VOT between the productions of voiced and voiceless targets. Category 2 included 

productions where target voiced and target voiceless sounds were produced with different 

VOTs, but the contrast was not yet adult-like. Specifically, these productions fell within 

the voiced category (for the target voiced sounds) or around the adult perceptual 

boundaries of the VOT contrast (for the voiceless targets). Perceptual boundaries are the 

point on a continuum where an adult changes the label they give to a sound in a two 

alternative forced choice task. These sounds were transcribed as voiced, despite the fact 

that the voiced and voiceless targets were produced differently. Category 3 included 

adult-like voicing contrasts. The Category 2 data demonstrated that phonetic 

transcriptions might mischaracterize  children’s  productions.  Sound  contrasts  do  not  

change from being absent to present in a discontinuous manner. Rather, acoustic markers 

emerge continuously over time. 

 More recent studies have found evidence of covert contrasts for other sounds. An 
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acoustic analysis by Forrest, Elbert, Weismer, and Dinnsen (1994) compared /t/ and /k/ 

productions of three groups of children: typically developing children who had mastered 

the /t/-/k/ contrast, children with a phonological disorder who had mastered the /t/-/k/ 

contrast fully (as assessed by phonetic transcriptions of words with /t/ and /k/ in a variety 

of word positions), and children with a phonological disorder who only produced a 

correct /t/-/k/ contrast at the beginnings of words. The researchers found that /t/ and /k/ 

productions of the former two groups (the typically developing children and the children 

with phonological disorder who had mastered the /t/-/k/ contrast in all word positions) 

were acoustically distinct, and were produced similarly by both groups. However, the 

acoustic characteristics of /t/ and /k/ productions from the latter group were less distinct 

from one another, even though they had been transcribed as correct. This shows that there 

are a wide range of acoustic outputs possible within the perceptual boundaries of /t/ and 

/k/. Additionally, the degree or robustness of contrast between productions is meaningful 

in  determining  the  child’s  level  knowledge  about  the  sounds.   

 Covert contrasts can also be documented with direct articulatory measures. 

Gibbon (1990) employed electropalatography, a tool that measures and displays the 

contact of the tongue to the top of the mouth (palate). Gibbon investigated tongue-palate 

contact  during  /d/  and  /ɡ/  production.  The  /d/  and  /ɡ/  are  characterized by the same 

articulatory posturing as the /t/ and /k/, respectively. The sound pairs differ in VOT, with 

/t/ and /k/ having long-lag  VOTs  and  /d/  and  /ɡ/  having  short-lag VOTs. Gibbon studied 

two  children,  whose  productions  of  target  /d/  and  /ɡ/  were  transcribed to be identical, as 

well as one adult speaker with typical productions of these sounds. The 
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electropalatography data showed that the children clearly and consistently differentiated 

between  target  /d/  and  target  /ɡ/,  although  in  different  ways  from each other and from the 

adult speaker. These results provide support for the existence of covert contrasts in the 

production of stop consonant place. Hence, they provide further evidence of the gradient 

nature of phoneme acquisition, and the shortcomings of the forced-choice system of 

phonetic transcription. 

Following documentation of covert contrasts, researchers have studied the clinical 

significance of these subtle, within-category acoustic differences. Gierut and Dinnsen 

(1986) transcribed and acoustically analyzed the sound productions of two children who 

appeared, prior to analysis, to be producing the same sound error pattern. When analyzed, 

the authors found that one child was truly not marking sound contrasts, while the other 

child was marking contrasts in consistent yet subtle ways. They noted the importance of 

an alternative method to phonetic transcription in understanding the sound production 

knowledge of these two children. Further, though the phonetic transcriptions of these two 

children suggested that they had similar treatment needs, the acoustic analysis suggests 

that they might benefit from different therapeutic goals and teaching approaches. Tyler, 

Figurski, Langsdale (1993) investigated the relationship between covert contrasts and 

progress in speech therapy. The authors noted one participant who, prior to treatment, 

produced a “significant  acoustic  distinction” between velar /k, ɡ/ and alveolar /t, d/ target 

sounds that  was  “largely  imperceptible”  (p.  747).  Even  though  the  child  was  producing  

acoustic differentiation, phonetic transcription suggested that he was producing the 

targets incorrectly and indistinctly. This child made some of the fastest and most 
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significant gains over the treatment period compared to the six other participants. This 

prompted the authors to conclude that the presence of some acoustic differentiation may 

facilitate faster learning and generalization of a sound target. MacLeod and Glaspey 

(2014) found that children with speech sound disorders gradually progressed toward 

producing more acoustically velar-like sounds over the course of speech therapy. As the 

children improved their ability to produce acoustically velar-like sounds, they required 

less cueing to produce velar stops. Acoustic analysis and required cueing level captured 

the gradual process of sound acquisition that phonetic transcriptions did not encode. 

Taken together, these studies illustrate that the presence of covert contrasts can play a 

significant role in goal setting, treatment approach, and progress in therapy. 

Despite the mounting evidence for gradient differences in speech sound 

production, traditional clinical and research methods for measuring sound accuracy and 

development have relied on the binary correct or incorrect measures based on phonetic 

transcriptions (Gardner, 1997). Indeed, a great deal of the scientific knowledge about 

children’s  speech  sound  production, including age of acquisition norms, has been built 

upon phonetic transcriptions (Smit et al., 1990; Macken & Barton, 1980; Gierut & 

Dinnsen, 1986). Phonetic transcriptions cannot document the possible range in output 

shown in articulatory and acoustic studies of  children’s  speech (Forrest et al., 1990; 

Forrest et al., 1994; Gierut & Dinnsen, 1986; Li, 2012). Some studies employ 

intermediate phonetic transcription categories (e.g., Munson, Edwards, Schellinger, 

Beckman, & Meyer, 2010, based on the suggestion by Stoel-Gammon, 2001). A 

transcription of [s:ʃ] indicates a sound perceived closer to /s/, but with some /ʃ/-like 
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(“sh”-like) qualities. Even with the use of intermediate categories, transcriptions do not 

capture all of the within-category detail that might be relevant for understanding 

phonological acquisition and disorders. To study gradual acquisition, a tool must be able 

to capture fine-grained differences in speech sound production. Gibbon (1990) remarked 

that  transcription  is  an  “oversimplification  or  even  misrepresentation”  (p.  338)  of  a  

child’s sound production knowledge. Moreover, transcription is subject to sometimes 

idiosyncratic  individual  differences  related  to  individuals’  unique  perceptual  abilities  and  

linguistic histories (Ladd, 2011).   

On a psychometric level, both trained and untrained listeners fail to achieve 

acceptable levels of intra- and inter-rater reliability using a two-alternative forced choice 

paradigm (Mayo, Gibbon, & Clark, 2013). Mayo et al. (2013) presented consonant-

vowel-consonant  sequences  (“a  go”  and  “a  doe”)  to  trained and untrained listeners. The 

stimuli were synthetic speech, with the transitions into and out of the consonants 

manipulated to produce both clear /d/ and /ɡ/ sounds and intermediates. Both groups of 

listeners had poor intra-rater  reliability.  The  authors  remarked  “listeners had high 

perceptual sensitivity to within-category detail but difficulty pairing that sensitivity with 

the limited number of categories provided  for  them”  (p.  786).  

Because speech contains within-category acoustic differences, some talkers may 

produce sounds in a contrast more similarly than other talkers. It is meaningful to 

characterize  a  talker’s  degree  of  difference,  or  robustness  of  contrast, between two 

sounds. A talker who consistently produces /t/ and /k/ distinctly is said to have a robust 

contrast for this pair. Robustness of contrast has been applied to acoustic measures from 
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the /s/ and /ʃ/ sounds (Holliday, Reidy, Beckman, & Edwards, 2014; Perkell, Matthies, 

Tiede, Lane, Zandipour, Marrone, Stockman, & Guenther, 2004; Romeo, Hazan, & 

Pettinato, 2013). Perkell et al. (2004) used separation of spectral mean, the average of 

frequency components in a sound, to characterize robustness of the /s/ - /ʃ/ contrast. 

Romeo et al. (2013) proposed three measures of robustness of contrast: within-category 

dispersion (degree of spread around the spectral mean), between-category distance 

(difference in spectral mean values between the two sounds), and discriminability, d(a), 

(between category distance divided by the square root of mean variances). Holliday et al. 

(2014) introduced percent correctly predicted, which inputs spectral mean into a model 

of the /s/-/ʃ/ characteristics. The model predicts whether the production was transcribed 

as [s] or [ʃ]. The proportion that matches transcription category for each talker yields 

percent correctly predicted. This measure describes category overlap, like between-

category distance, but without the influence of distance in separation. 

Acoustic analysis has played a significant role in contributing to the speech sound 

literature (Forrest et al., 1990; Forrest et al., 1994; Gierut & Dinnsen, 1986). At this time, 

however, acoustic measures remain imperfect and largely impractical for clinical use. 

Acoustic measures do not consistently correspond to articulatory gestures (Marin, 

Pouplier & Harrington, 2010). Most clinical settings lack the equipment and quiet 

environments to gather high quality recordings, and the analysis process can be time 

consuming. Similarly, the instrumentation to conduct electropalatography remains 

prohibitively costly for the majority of therapy settings. The limitations of acoustic and 

articulatory analysis, and perceptually based phonetic transcriptions establish a need for a 
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clinically viable, acoustically valid, and perceptually reliable tool to capture within-

category  variation  in  children’s  productions.     

One solution to this problem is to use continuous rating scales. A growing number 

of studies have investigated listener perception of covert contrasts using visual analog 

scales (Beckman, Munson, & Edwards, 2014; Julien & Munson, 2012; Munson et al., 

2010; Munson, Johnson, & Edwards, 2012; Strömbergsson, 2014). Visual analog scaling 

(VAS) refers to any method in which a sensory percept is converted into a visual analog 

of that percept. One widely used VAS is for the assessment of pain in emergency medical 

settings. In these scales, pain is represented visually by simple facial expressions. People 

select the facial expression that corresponds to the level of pain they are experiencing 

(DeLoach, Higgins, Caplan, & Stiff, 1998) 

In the previous research most relevant to the current, the VAS was a double-

headed arrow with a hash mark in the center of the line. At each endpoint of the line, the 

text  “the  ‘X’  sound”  was  written.  Listeners  heard  a  sound  and  clicked  along  the  line  

where they perceived the sound to fall. The click location was taken as the rating. The 

text  associated  with  ‘X’  varied  across  studies:  in  Julien and Munson (2012), it was ‘s’  at  

one  end  and  ‘sh’  at  the  other.  In  Munson  et  al.  (2010),  it  was  ‘s’  and  ‘th’.    The  double-

headed arrow with a mark at its center was meant to invoke the number line: a neutral 

midpoint (as in the case of the number zero), and continuous variation (as suggested by 

the arrowhead) away from the neutral midpoint, toward either one sound or the other.   

Studies of  adults’  perception  of  children’s  productions  of  the  voiceless lingual 

fricatives  /θ/,  /s/,  and  /ʃ/  using  VAS  have argued that ratings using this technique are a 
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viable proxy for acoustic analysis. Several pieces of evidence support this claim. First, 

both trained and untrained listeners provide a variety of VAS ratings for sounds that are 

transcribed with the identical phonetic symbol, and these correlate with acoustic 

characteristics of the sounds being rated (Julien & Munson, 2012; Munson, Johnson, & 

Edwards, 2012). When compared to other perceptual tools, such as reaction time to a 

forced choice and direct magnitude estimates of category goodness, VAS ratings have 

superior intra-rater  reliability,  and  have  a  stronger  correlation  with  sounds’  acoustic  

characteristics (Munson & Urberg Carlson, 2015). While most of the studies cited above 

examined  the  perception  of  children’s  fricatives,  a small number of recent studies have 

suggested that VAS is also a useful tool for measuring acquisition of the /t/ - /k/ contrast. 

Studies using acoustic analysis have shown that this contrast is acquired gradually 

(Forrest et al., 1990; Forrest et al., 1994). Munson et al. (2012) showed that sounds 

transcribed as intermediate between /t/ and /k/ are given VAS ratings that are 

intermediate between those for /t/ and those for /k/. Strömbergsson (2014) extended this 

finding to Swedish, and showed that VAS ratings correlate with acoustic characteristics 

of the sounds being rated. Beckman, Munson, and Edwards (2014) showed that Japanese- 

and English-speaking  adults’  VAS  ratings  of  Japanese- and English-acquiring  children’s  

/t/ and /k/ productions differed in ways that are predicted by cross-linguistic differences 

in the production of the /t/-/k/ contrast.  

In sum, VAS is a potentially powerful tool because of its simplicity and utility in 

describing,  through  the  ecologically  valid  metric  of  listener  perception,  a  child’s  

production accuracy and progress in speech therapy. VAS can also be used to provide a 
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robustness of contrast measure without the need for acoustic analysis. Robustness of 

contrast can be defined in terms of separation of ratings along the VAS between 

contrasting sounds, and capture the variability in ratings for each sound. Further 

investigation of its use is necessary to determine whether VAS is a clinically viable 

method for capturing subtle acoustic differences in the /t/-/k/ contrast. 

1.1 Aims of this study 

The current study had two general aims. The first aim was to develop and validate 

a VAS to measure children’s  productions of words that began with a /t/ or a /k/ target. 

Like previous scales, this should elicit a continuous response, thereby allowing the tool to 

measure the gradual acquisition of this contrast. Given the previous findings by Beckman 

et al. (2014), Munson et al. (2012), and Strömbergsson (2014), it was hypothesized that 

untrained adult listeners will utilize the full range of a visual analog scale when presented 

with  children’s  productions.  We  predicted that these ratings would utilize the entire range 

of the VAS, that they would have a high degree of intra-rater reliability, and that they 

would differentiate among different transcription categories, including among both 

endpoint  transcriptions  and  intermediate  ones.  It  was  hypothesized  that  listener’s  

responses would vary significantly based on transcription category, with greater variance 

in the responses described by the intermediate transcription categories. 

The second aim of this study was to derive measures  of  how  robustly  children’s  /t/  

and /k/ productions differed based  on  listeners’  ratings, and to examine predictors of 

child-by-child differences in the VAS-derived measures of robustness of /t/-/k/ contrast.  

A large set of measures, beyond the speech production samples used as stimuli in the 
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VAS studies, was collected from the children as part of a larger longitudinal study. 

Predictor variables included ones that were related to input (home language environment, 

maternal education, dialect of English spoken at home, status as a late talker) or output 

related (vocabulary, executive functions, speech sound discrimination). It was 

hypothesized that both input and output related factors would play a significant role in 

predicting  children’s  robustness  of  contrast  for  /t/  and  /k/.  Because  the  productions  that  

were used as stimuli in this study were phonetically transcribed, this study also provided 

the opportunity to examine whether the VAS-derived measures of robustness of contrast 

were predicted by a different set of measures than those that predicted accuracy as 

determined by phonetic transcription. A finding that different factors predicted the two 

measures of /t/-/k/ production would suggest that they index different underlying skills.   

2 Methods 

This section is divided into three subsections.  The first describes the child talkers 

whose productions were used as stimuli in the VAS perception study. It includes a 

description of the characteristics of the talker participants, the predictor variables 

identified in this study, and the methods for collection speech samples. The second 

section describes the procedures for stimulus preparation. The third section describes the 

adult listeners and the procedure for the perception study. 

2.1 Child talkers 

This section presents characteristics of the talkers. Child-related output and input 

predictors of speech production are discussed. A table of correlations to characterize the 
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set of predictor variables is shown. Finally, the procedure for speech sample collection is 

described. 

2.1.1 Talker participants 

The stimuli for this perception study were produced by 63 children, 28 to 39 

months old (Figure 1).  Children were recorded at both the University of Minnesota in 

Minneapolis and the University of Wisconsin in Madison. All children passed a hearing 

screening of 1000, 2000 and 4000 Hz tones presented at 25 dB HL. The children were 

recruited via advertisements in local newspapers, connections with community 

organizers, and fliers posted around the community. 

All children included in this thesis participated as part of a larger longitudinal 

study on development of phonological knowledge and vocabulary 

(www.learningtotalk.org). Testing was completed over two or three visits, of one to two 

hours each. The children were all from monolingual, English-speaking households per 

Figure 1: Distribution of talker ages 
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caregiver report. This study included children from both Mainstream American English 

(MAE) and African American English (AAE) dialect home language environments. 

Dialect was determined during a pre-visit phone interview and confirmed at the first 

testing session. Morphological and phonological elements of AAE were considered. Late 

talker status was defined as receptive vocabulary and prelinguistic skills within normal 

limits,  with  expressive  vocabulary  below  normal  limits  for  a  child’s  age,  with  no  other  

speech, language, hearing, or developmental diagnoses. Talker participants represented a 

range of maternal education levels. A table of child characteristics is shown below (Table 

1 through Table 3). Due to the large number of talkers and speech tokens used as stimuli 

in this study, talkers were assigned to one of three different experiment versions (A, B, 

C).  This ensured that no one listener would participate in an overly long experiment.  

Talker assignment was balanced by age, sex, maternal education, late talker status, and 

dialect (Table 4). In order to identify predictors of speech production ability, a variety of 

measures was collected to describe child-level differences in language and related areas. 

This project categorizes these talker-related variables as either output variables (i.e., 

measures  of  individual  children’s  performance),  or  input  variables  (i.e.,  home  language  

environment).  
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Table 1: Child talkers in experiment version A 

 

  

Talker 
ID 

Age 
(months) 

Sex Maternal Education  Late 
Talker 

Dialect 

001L 28 F College degree No MAE 
010L 32 M Graduate degree No MAE 
013L 32 M GED No AAE 
014L 39 M Graduate degree No MAE 
025L 37 F High School diploma No AAE 
033L 35 F College degree No MAE 
046L 35 F Some college No AAE 
049L 38 M College degree Yes MAE 
051L 29 F Some college No MAE 
058L 36 F Some college No MAE 
086L 35 M Some college No MAE 
087L 30 M College degree No MAE 
108L 29 M Graduate degree Yes MAE 
131L 32 M Some college No MAE 

133L 35 M Trade school OR Associate's/ 
Technical OR Some college No MAE 

604L 30 F Graduate degree No MAE 
607L 36 M College degree No MAE 
613L 34 F Graduate degree No MAE 
620L 28 F College degree No MAE 
660L 28 F Graduate degree No MAE 
671L 31 M Some college Yes AAE 
675L 31 F College degree No MAE 
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Table 2: Child talkers in experiment version B 

  

Talker 
ID 

Age 
(months) 

Sex Maternal Education  Late 
Talker 

Dialect 

006L 28 F College degree No MAE 
012L 30 M Graduate degree No MAE 
017L 28 M GED No AAE 

034L 38 F 
Trade school OR Associate's/ 
Technical OR Some college No MAE 

035L 32 F Some college No AAE 
039L 37 M College degree No MAE 
051L 29 F Some college No MAE 
066L 38 F High School diploma No AAE 

088L 30 M 
Trade school OR Associate's/ 
Technical OR Some college No MAE 

089L 29 M Graduate degree Yes MAE 
092L 37 M High School diploma No MAE 
107L 34 F Some college No MAE 
123L 28 M Graduate degree Yes MAE 
600L 37 M Graduate degree No MAE 
610L 31 F Graduate degree No MAE 
629L 30 M Graduate degree No MAE 
630L 28 F Trade school No MAE 
632L 37 F Graduate degree No MAE 
646L 34 M GED No AAE 
661L 28 F Some college No MAE 
673L 35 M College degree No MAE 
680L 31 M Graduate degree Yes MAE 
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Table 3: Child talkers in experiment version C 

  

Talker 
ID 

Age 
(months) 

Sex Maternal Education  Late 
Talker 

Dialect 

022L 34 F Graduate degree No MAE 
024L 31 M Trade school No AAE 
036L 29 F Some college No AAE 
040L 37 F High School diploma No MAE 
051L 29 F Some college No MAE 

053L 35 M 
Trade school OR Associate's/ 
Technical OR Some college No MAE 

067L 37 F High School diploma No AAE 
071L 30 M Graduate degree No MAE 
076L 34 M College degree No MAE 
083L 30 F Some college No MAE 
093L 28 F Some college Yes MAE 
101L 38 M College degree No MAE 
110L 30 M College degree No MAE 
128L 31 F College degree Yes MAE 
602L 34 M Graduate degree No MAE 
603L 35 F Graduate degree No MAE 
612L 29 F Technical/Associate’s  degree No MAE 

636L 29 F 
Trade school OR Associate's/ 
Technical OR Some college No MAE 

640L 37 F High School diploma No MAE 
655L 28 M Graduate degree No MAE 
681L 32 F Graduate degree Yes MAE 
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Table 4: Child talker information by experiment version. Maternal education was 
converted to an ordinal variable for each child, averaged, and then converted back 
to a nominal value. 

 

 

 

2.1.2 Output predictor variables 

Output measures were a series of standardized and non-standardized assessments.  

They included both experimenter-administered activities and questionnaires completed 

by  the  child’s  caregiver. These were measures of executive function, speech perception, 

and vocabulary knowledge (Table 5). Tests were administered by trained undergraduate 

and graduate students. 

 

  

Experiment 
Version 

Number 
of 
talkers 

Average 
age 
(months) 

Number 
of 
females 

Average 
maternal 
education 

Number 
of late 
talkers 

Number 
of AAE 
speakers 

A 22 32.7 11 Some 
college to 
College 
degree 

3 4 

B 22 32.2 10 Some 
college to 
College 
degree 

3 4 

C 21 32.2 13 Some 
college to 
College 
degree 

3 3 
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Table 5: Predictor output measures, shown with label used in correlation tables 
Measure (Label used to refer to this 
measure in the Results section) 

Description 

Fruit Stroop (FruitStroop) Attention and inhibition, tested 
Behavioral Rating Inventory of 
Executive Functions global composite 
percentile (BREIFGlobal Percentile) 

Overall measure of executive 
functions, caregiver questionnaire  

Minimal Pair Discrimination 
(MinPairs) 

Percentage of pictures correctly 
identified in auditory-based minimal 
pair discrimination task, field of 2 
pictures, tested 

Expressive Vocabulary Test Raw 
Score (EVT_Raw) 

Raw score on standardized, norm-
referenced assessment of expressive 
vocabulary, tested 

Expressive Vocabulary Test Standard 
Score (EVT_Stnd) 

Standard score on standardized, norm-
referenced assessment of expressive 
vocabulary, tested 

Expressive Vocabulary Test Growth 
Scale Value (EVT_GSV) 

Growth scale value on standardized, 
norm-referenced assessment of 
expressive vocabulary, tested 

Peabody Picture Vocabulary Test Raw 
Score (PPVT_Raw) 

Raw score on standardized, norm-
referenced assessment of receptive 
(understanding) vocabulary, tested 

Peabody Picture Vocabulary Test 
Standard Score (PPVT_Stnd) 

Standard score on standardized, norm-
referenced assessment of receptive 
(understanding) vocabulary, tested 

Peabody Picture Vocabulary Test 
Growth Scale Value (PPVT_GSV) 

Growth scale value on standardized, 
norm-referenced assessment of 
receptive (understanding) vocabulary, 
tested 

MacArthur-Bates Communication 
Development Inventory total number 
of words (CDI_Produce) 

Number of words child produces 
across environments, caregiver 
questionnaire 

 

Executive function measures were used to investigate whether children’s  ability  to  

attend to relevant information and inhibit extraneous information plays a significant role 

in speech production abilities. The Fruit Stroop test was used, in which a child saw a 

small fruit (apple, orange, banana) inscribed in a larger different fruit (similar to 
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Archibald & Kerns, 1999). The child must attend to the small fruit while inhibiting the 

competing information of the larger fruit. The BRIEF is a caregiver-completed 

questionnaire  that  asks  questions  regarding  the  child’s  behavioral regulation and 

metacognition (Gioia, Espy, & Isquith, 2003).  

Speech perception was assessed through a minimal pair picture discrimination 

task. In this activity the child heard one word over speakers and was then presented with 

two pictures, one of the spoken word, and one of a word that differed by one speech 

sound  (e.g.  “bear”  played  over  speakers,  pictures  of  “bear”  and  “pear”  presented on 

screen). Participants responded via touch screen. Investigating speech perception is 

important because many speech sound production errors are rooted in phonological 

perception difficulties (Locke, 1980). Further, speech perception abilities provide insight 

into  a  child’s  phonological  system.  Because  better  accuracy  at  identifying  the  labeled  

word of two minimal pairs indicates greater phonological knowledge, it was hypothesized 

that children with higher scores would produce a more adult-like /t/-/k/ contrast.  

Vocabulary size has been shown to be a strong predictor of some aspects of 

phonological knowledge in children (Edwards, Beckman & Munson, 2004; Stoel-

Gammon, 1991). In order to explore this relationship more fully, multiple measures of 

vocabulary knowledge were included. Vocabulary was measured via administration of 

the Expressive Vocabulary Test – 2nd Edition (EVT-2, Williams, 2007), for vocabulary 

production, and the Peabody Picture Vocabulary Test – 4th Edition (PPVT-4, Dunn & 

Dunn, 2007), for vocabulary understanding. Tests were administered in accordance with 

standardized protocols. Additionally, the MacArthur Bates Communication Development 
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Inventory, a parent-completed questionnaire, was completed to identify the total number 

of words the child produces across environments (Fenson, Marchman, Thal, Dale, 

Reznick, & Bates, 2007). It was hypothesized that children with higher vocabulary scores 

on all measures would produce more robust contrasts.  

2.1.3 Input predictor variables 

Child-level input predictor measures were collected through surveys and 

Language Environment Analysis Pro (LENA Pro) recordings. Surveys were completed 

by the caregiver. Survey data were maternal education level, as an index for 

socioeconomic status (SES), status of late to start talking, and dialect. In the current 

study, maternal education level was interpreted as an ordinal variable (1=GED or high 

school  diploma,  2=technical,  trade  school  or  Associate’s  degree,  3=some  college,  

4=college degree, 5=graduate degree). The home language measures were recorded with 

LENA digital language processors and accessed through LENA Pro software. Measures 

were adult words heard, conversational turns, and meaningful speech heard (Table 6). 
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Table 6: Predictor input measures, shown with label used in correlation tables 
Measure Description 
Adult words heard per 
hour (WordsPerHour) 

Number of words spoken by an adult near the child 
per hour, LENA measure 

Conversational turns per 
hour (CTCPerHour) 

Number of turns in a conversation a child takes 
per hour, LENA measure 

Minutes of meaningful 
speech (Meaningful) 

Minutes of meaningful speech a child is exposed 
to per hour, LENA measure 

Maternal education level 
(MatEdOrdil) 

Expressed as ordinal variable with levels: GED, 
High school diploma, Some college, 
trade/technical  school  or  Associate’s  degree,  
College degree, Graduate degree 

Late Talker Child was late to start talking with no other 
speech, language, development, or hearing 
diagnoses, parent report and tested 

Dialect Dialect of English spoken at home: African 
American English, Mainstream American English 

 

Walker, Greenwood, Hart, and Carta (1994) reported on the language and 

intelligence outcomes of school aged-children, for whom SES, intelligence, and home 

language environment were measured between seven and 36 months. The authors found 

that at seven to 36 months, children from higher-SES households were exposed to a 

greater variety of words than their peers from lower-SES  households.  Children’s  

receptive and expressive language test scores, including receptive vocabulary, measured 

seven years later were strongly correlated to SES, language input, and intelligence 

measures from early in life. To examine the relationship between SES and the sound 

system,  Nittrouer  (1996)  measured  children’s  phonological  knowledge  with  two  sound  

manipulation tasks. Four groups were compared: mid-SES with no history of ear 



 

  23 

infections, mid-SES with chronic ear infections, low-SES with no history of ear 

infections, and low-SES with chronic ear infections. The children from low-SES 

backgrounds performed similarly on tasks to children from mid-SES backgrounds with 

frequent ear infections. All groups performed more poorly than the children from mid-

SES backgrounds with no history of ear infections. It was hypothesized that children 

from higher-SES households in this study would produce more robust contrasts. 

The LENA Pro system  was  used  to  collect  data  on  children’s  language  exposure  

on a typical day (Gilkerson & Richards, 2009). Each child wore a digital language 

processor recording device for one full day. The recordings were then processed with 

LENA Pro software, yielding daily total and hourly information on adult word count 

(number of words spoken by an adult in proximity to the recorder), conversational turn 

count (number of back and forth conversational exchanges between the child and adult), 

and percent of meaningful speech. It was hypothesized that the children who were 

exposed to richer linguistic environments would produce more robust sound contrasts. 

2.1.4 Correlations between predictor variables 

Because many of the predictor variables describe similar constructs (e.g. both the 

EVT scores and the CDI measure expressive vocabulary), it was expected that several of 

the input variables would be highly correlated. Descriptive correlations are presented 

below to characterize the set of independent variables. Because many of these variables 

are also correlated with age, both full correlations and partial correlations are presented. 

Partial correlations, in which the variables are residualized for age (i.e. the effect of age is 

removed) are presented above the diagonal, while full correlations are below the diagonal 
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(Table 7). 

2.1.5 Speech production data collection  

The stimuli for this perception study were recorded during a picture-based 

auditory word repetition activity. This task was administered via a computer running E-

Prime software. Auditory prompts were presented from Klipsch BT77 speakers, 

normalized to 70 dB, in a sound-treated booth. Speech recordings were collected with an 

Audio Technica (AT 4040) cardioid capacitor microphone and a Marantz Professional 

solid state recorder (PMD671).  

Speech production data were collected by trained undergraduate and graduate 

students. A visual reinforcer of an animal climbing a ladder was employed to increase 

motivation, in addition to praise, encouragement, and stickers. A total of 99 test trials 

were presented during this task, and were selected to be familiar to young children. For 

this study, 17 initial /t/ and /k/ target words were interspersed with the other targets for 

studies on speech sound development. Stimuli were presented in a randomly shuffled 

order for each participant. There were 17 target words (eight alveolar initial, nine velar 

initial) with two productions elicited for each target. The targets were selected to include 

high front, high back, and low back vowel contexts. 

/t/: tummy, table, toast, tooth, tongue, tape, teddy bear, tickle  

/k/: kitty, kitchen, candy, coat, car, cake, cup, cat, cookie 
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Table 7: Coefficients for correlations between independent measures. Partial correlations, without the effect of age on each 
variable, are shown above the diagonal. Full correlations, including the effect of age on each variable, are shown below the 
diagonal.  
* = p < 0.05 ** = p < 0.01  

Control Variables Age Fruit 
Stroop 

BRIEF 
Global 
Percen

tile 

Min 
Pairs 

EVT 
Raw 

EVT 
Stnd 

EVT 
GSV 

PPVT 
Raw 

PPVT 
Stnd 

PPVT 
GSV 

CDI 
Produc

e 

Words 
PerHo

ur 

CTCP
erHour 

Meani
ngful 

MatEd
Ordil 

Age FruitStroop .196   -.313* .202 .473** .457** .453** .396** .410** .398** .436** .012 -.058 -0.094 .288* 
BRIEFGlobal 
Percentile .116 -.282*   -.188 -

.333** -.320* -.312* -.169 -.167 -.153 -.223 -.148 -.165 -0.179 -.192 
MinPairs .221 .236 -.156   .259* .261* .280* .213 .221 .216 .216 .156 .227 0.158 .410** 
EVT_Raw .322* .503** -.275* .310*   .986** .990** .764** .756** .758** .587** .328** .233 .319* .282* 
EVT_Stnd .023 .453** -.315* .259* .941**   .985** .740** .743** .739** .595** .319* .226 .323* .276* 
EVT_GSV .319* .484** -

0.257* .330** .991** .941**   .741** .737** .743** .603** .323* .244 .331** .272* 
PPVT_Raw .388** .434** -.109 .278* .792** .690** .771**   .994** .995** .549** .396** .291* .233 .315* 
PPVT_Stnd .144 .426** -.147 .246 .755** .738** .738** .962**   .993** .571** .387** .276* .220 .325* 
PPVT_GSV .387** .435** -.095 .280* .787** .690** .773** .996** .962**   .562** .402** .313* .244 .319* 
CDIProduce .298* .467** -.177 .267* .627** .575** .640** .599** .583** .610**   .241 .251* .229 .089 
WordsPerHou
r -.063 .005 -.154 .138 .290* .317* .285* .340** .373** .345** .211   .735** .742** .359** 
CTCPerHour -.069 -.070 -.171 .205 .198 .224 .209 .241 .262* .262* .219 .736**   .712** .215 
Meaningful .009 -.091 -.177 .156 .305* .323** .316* .218 .219 .228 .222 .740** .710**   .254* 
MatEdOrdil -.210 .235 -.211 .345** .194 .265* .186 .203 .284* .207 .020 .364** .224 .247   
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In cases where the child did not attempt the target word, or the response was judged 

to be unusable (see Stimulus Preparation below), the student testers were instructed to 

refrain from providing a verbal model or repeating the target prompt. Testers instead used 

general  language  such  as  “what  was  that?”  or  “tell  me  again!”  to  limit exposure to the 

target sounds. 

2.2 Stimulus preparation 

This section describes the process of isolating the target speech productions, 

annotating the productions, and preparing the productions for use as stimuli in for the 

perception study. 

2.2.1 Recording segmentation 

After speech elicitation, a team of trained students isolated and annotated target 

words in a process referred to as segmentation. Segmentation was performed using Praat 

software, with scripts written by members of the Learning to Talk team.  For  each  child’s  

recording, a text grid was created including the target word, boundaries of the production, 

and production number within a trial. Descriptive notes were included, such as whether 

the child responded immediately after the target stimulus or if there was intervening 

speech, and if there were any issues with the recording (e.g. background noise, too quiet 

or loud). All segmentation text grids were checked by an additional trained student prior 

to acoustic event tagging. 

2.2.2 Acoustic event tagging and stimulus extraction 

Acoustic tagging was also performed using Praat software, with custom-written 
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scripts. The acoustic tagging protocol was based off of that developed by Eunjong Kong 

and Tim Arbisi-Kelm, and described in Kong and Weismer (2010). A detailed description 

of the tagging protocol is presented in Appendix A. Two trained graduate students tagged 

the acoustic events for all recordings. The tagging process consisted of five key elements 

(Table 8): selecting the production to be tagged, transcribing the initial consonant, noting 

any atypical characteristics of the production or sound sample, placing a tag for the time 

of  the  stop  burst  (“burst”),  and  placing  a  tag  for  the  onset  of  vocal  fold  vibration  

(“VOT”).     

Table 8: Acoustic event tagging process 
Tagging Step Description Purpose 
1. Select 
production 

When multiple productions of a target were 
present, the first usable response was 
selected. Productions were considered 
unusable if the burst was not audible, the 
waveform was clipped, or the production 
was obscured by background noise. 

Select the most 
authentic representation 
of  a  talker’s  target  
production  

2. Transcription Target sound was assigned a label for 
manner (stop, affricate, other) and place ([t, 
t:k, k:t, k], other) based on tagger’s 
perception 

Assign a label for 
production relative to 
target sound. Used to 
calculate  “accuracy”   

3. Add notes Added notes to textgrid as applicable: 
background noise, overlapping response, 
quiet, clipping, deleted, malaprop, short 
VOT 

Document atypical 
characteristics of a 
production 

4. Tag stop burst Labeled first clear peak in the waveform, 
deviating from zero  

Identify beginning of 
consonant production 

5. Tag voicing 
onset 

Labeled beginning of quasi-periodic 
motion in waveform 

Identify beginning of 
vowel production 

 

To begin, the tagger listened to the length of time approximately corresponding to 

the initial consonant and vowel (as judged by the waveform). The tagger selected this 

production if a) it was considered to be usable (see below) or b) it was the only 
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production available, and enough information was present to place tags. If no taggable 

productions were available for a trial, it would be coded as missing data. Taggers were 

instructed to always tag the first usable production of a target, meaning that the tagger 

was able to identify a stop burst and an onset of vocal fold vibration, and there was no 

noise obscuring the initial consonant and vowel. The first usable production was selected 

to  sample  the  child’s  most  authentic  production  ability  for  a  target.  Errors  in  sound  

production were still considered usable data.  

After selecting a production, the tagger transcribed the perceived manner (stop, 

affricate, other) and place of articulation (alveolar [t], velar [k], intermediate to [t] and 

[k], Other) of the initial stop (Table 9).  Productions  transcribed  as  “affricate”  and  “Other”  

for  manner,  or  transcribed  as  “other”  for  place  of  articulation  were  not  presented  as  

perception stimuli. 

Table 9: Transcription category descriptions 
Transcription Interpretation 
[t] Perceived  as  alveolar  place  of  articulation;;  Counted  as  “accurate”  for  

target /t/ only 
[t:k] Perceived as intermediate to alveolar and velar place of articulation, but 

closer  to  alveolar;;  Counted  as  “accurate”  for  target  /t/  only 
[k:t] Perceived as intermediate to velar and alveolar place of articulation, but 

closer  to  velar;;  Counted  as  “accurate”  for  target  /k/  only 
[k] Perceived  as  velar  place  of  articulation;;  Counted  as  “accurate”  for  

target /k/ only 
Other Perceived as fricative (such as [s]), or place of articulation was outside 

of  the  velar  to  alveolar  range  (such  as  [p]);;  Never  counted  as  “accurate” 
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Following transcription, the target sequence was annotated to flag any atypical 

qualities of the production or sound sample. Notes included background noise, 

overlapping  response  (child’s  production  overlapped  with  computer  stimulus),  quiet  (to  a  

degree that a stop burst was not audible), clipping (production was too loud, and peaks of 

waveform were clipped), deleted (target was attempted but an initial consonant was not 

produced), malaprop (child produced the target sound, but within a non-elicited word), 

devoiced vowel, and short VOT (voice onset time of less than 20 msec). No productions 

were excluded due to use of annotations, but these notes were visible during the process 

of perception stimulus selection. 

Two primary acoustic events were tagged, the stop burst of the initial consonant 

and the onset of voicing of the following vowel. Stop burst was operationally defined as 

Figure 2: Waveform, spectrogram and textgrid showing cursor location at 
“burst” 
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the first peak of the waveform, as a clear deviation from the baseline waveform of pre-

burst lip closure (Figure 2). While tags were primarily placed based on the waveform, 

presence of energy in the spectrogram was also considered to disambiguate challenging 

cases. To ensure that noise was not mislabeled as a stop burst, burst peaks were defined 

as at least 15 decibels (dB) more intense and 20 msec after all other burst candidates. The 

second tag, voicing onset, was marked at the beginning of the first voicing cycle (Figure 

Figure 3: Waveform, spectrogram and textgrid showing cursor location at 
“VOT” 
 

Figure 4: Approximate length of perception stimulus 
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3). This was observed as the first upswing of the cycle prior to first clear downswing 

below the zero line. Voicing was always tagged at a zero-crossing. Following 

transcription and event tagging, a compilation of candidate stimuli was created by 

extracting the audio from 15 msec prior to the burst tag to 150 msec after the VOT tag 

(Figure 4). Candidate stimuli were those that were transcribed as a stop consonant with 

both  a  “burst”  and  “VOT”  tag.  Candidate  stimuli  were  excluded  from  the  perception  

experiment if they were too quiet (burst not audible) or too loud (clipping in waveform), 

or if background noise occurred during the consonant-vowel sequence, including that 

from the child’s  production  overlapping  the  computer  prompt.  Stimuli  were  also  

discarded if the onset of vocal fold vibration fell within 20 msec of the  “burst”  tag.  The 

stimuli were then amplitude normalized. A total of 1564 productions were prepared for 

presentation across the three experiment versions (Table 10). All tokens from one talker, 

051L, were included in all three experiment versions to be used in intra-rater reliability 

measures. 

Table 10: Number of tokens by transcription categories for unique talkers in 
versions A, B, C and common talker, 051L 
Transcription:  [k] for 

/k/ 
[k] for 
/t/ 

[k:t] [t:k] [t] for 
/k/ 

[t] for 
/t/ 

total 

051L: Common 12 
(43%) 1 (4%) 2 (7%) 

5 
(18%) 0 (0%) 8 (29%) 28 

Version A: 
Unique 

200 
(38%) 10 (2%) 

43 
(8%) 

34 
(7%) 35 (7%) 

201 
(38%) 523 

Version B: 
Unique 

205 
(41%) 6 (1%) 

35 
(7%) 

35 
(7%) 18 (4%) 

201 
(40%) 500 

Version C: 
Unique 

225 
(44%) 9 (2%) 

26 
(5%) 

32 
(6%) 17 (3%) 

204 
(40%) 513 
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2.3 Adult listeners 

This section presents characteristics of the adult listeners and describes the 

perception study procedure. 

2.3.1 Listener participants 

The listener participants in this perception study were 47 adults (16 in experiment 

versions A and B, 15 in version C), tested at the University of Minnesota in Minneapolis 

(Table 11). A total of 65 listeners was eventually tested for each version; this thesis 

reports on the listeners whose data had been collected by April 19, 2015. Listeners were 

recruited via fliers posted around the University campus, in-class announcements to 

undergraduates in Department of Speech-Language Hearing Sciences lectures, and 

through word of mouth. All listener participants were self-reported to be native speakers 

of a North American dialect of English, defined as having acquired a North American 

dialect of English from birth in North America, from parents who speak North American 

English. Listeners also had no history of speech, language, or hearing impairments per 

self-report. Listeners were 18 to 39 years old, and 17 of the 47 listeners were male. A 

hearing screening was administered at 500, 1000, 2000 and 4000 Hz tones presented at 

25 decibels hearing level (dB HL). All but two participants passed the hearing screening 

(the two listeners did not respond to 4000 Hz at 25 dB HL). Listeners were untrained in 

rating  children’s  speech.   
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Table 11: Adult listener information by experiment version 
Experiment 
Version 

Number of 
Listeners 

Average Age  
(years) 

Number of 
females 

A 16 22 9 
B 16 22 13 
C 15 23 8 

 

2.3.2 Perception experiment procedure 

This perception experiment was administered on a Dell laptop running E-Prime 

software. Testing was completed in a quiet room, and stimuli were presented through 

Sennheiser HD 280 Pro circumaural headphones at a comfortable listening level. A total 

of 1564 consonant vowel sequences for target /t/ and /k/ were presented to listeners, split 

into three experiment versions (A, B, C) of roughly equal lengths. The experiment was 

divided into three versions avoid listener fatigue. Listeners were provided with written 

and  verbal  instructions  to  rate  the  speech  sound  along  the  VAS,  with  one  end  labeled  ‘the  

“t”  sound’  and  the  other  end  labeled  ‘the  “k”  sound’  (Figure 5). 

 

Figure 5: VAS presented in perception study 
 

Stimuli were played while the screen  showed  “Listen”.  After  the  stimulus  offset,  

the VAS appeared on the screen. Responses were not timed. Five practice items, 

representative of both intermediate and non-intermediate productions, from a previously 
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collected  corpus  of  children’s  speech  samples  (paidologos  project,  Edwards  &  Beckman,  

2008) were presented at the beginning of each experiment version to acclimate listeners 

to the VAS. Test stimulus presentation order was randomly shuffled for each listener. For 

the purpose of statistical analysis, click location along the VAS (x-axis click location) 

was  converted  so  that  “the  ‘t’  sound”  arrowhead  =  -1.0  and  “the  ‘k’  sound”  arrowhead  =  

1.0, with the VAS midpoint = 0.0.  

3 Results 

The results section is organized as follows. First, listener VAS rating results are 

presented. This section describes the pattern of results aggregated across listeners, then 

describes the performance of individual listeners. The next section describes the 

relationship between the measures of individual differences among the talkers and the 

listener VAS ratings. That section includes both descriptive correlations and linear 

regression models.  

3.1 Listener results 

Listeners were asked to click along the visual analog scale to indicate how /t/- or 

/k/-like they  perceived  each  token  to  be.  For  data  analysis,  the  “t  sound”  and  “k  sound”  

points  along  the  scale  were  transformed  so  that  “t”  =  -1.0  and  “k”=  1.0, with the line 

midpoint = 0. The aggregated response clicks were found to be distributed somewhat 

bimodally along the visual analog scale (Figure 6). This bimodal distribution shows that 

the listeners had a tendency to perceive sounds as either /t/-like or /k/-like.  The fact that 

the ratings utilized the entire scale indicates that there were numerous sounds perceived 
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as ambiguous or intermediate. This result is what we would predict given that the 

productions used as stimuli had more instances of sounds transcribed as [t] or [k] than 

ones transcribed as intermediate.  

3.1.1 Aggregated listener differentiation between transcription categories 

This section reports on how well listeners, pooled together, were able to 

differentiate between transcription categories using the VAS. Because the tokens 

presented in this perception experiment were initially transcribed into four categories ([t, 

t:k, k:t, k]) listener click location was compared  to  the  trained  transcriber’s  assignment  to  

transcription category. Figure 7 shows boxplots of the click locations, pooled across all 

listeners, along the visual analog scale for each transcription category. Six categories are 

shown in this plot because substitutions are different from correct productions. 

A linear mixed-effects model was applied to ratings. Normalized click location 

Figure 6: Aggregated ratings along VAS for 47 listeners 
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(i.e., clicks normalized to the [-1,1] range) was used as the dependent measure. 

Transcription category was a fixed effect. Terms were added for slopes for individual 

listeners, and for the effect  of  transcription  category  on  individual  listeners’  ratings.  A  

series of models was built, with each of the transcription categories as reference levels. 

All of these models had a significantly better model fit than a model whose only term was 

a random intercept for listeners. In all of these models, transcription category had a 

significant effect on ratings. The only pairwise contrast that was not significant at the a < 

0.05 level was that between productions transcribed as [t] for target /t/ and [t] for target 

/k/.  This is somewhat surprising, as this difference has been found previously to differ 

acoustically. This could be due an oversampling of true [t] for /k/ substitutions rather than 

covert contrast productions transcribed as [t], as covert contrasts may have been more 

often transcribed as [t:k]. Comparison of these rating data to acoustic measurements 

Figure 7: Click location for the six transcription categories 
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(Johnson, in progress) will provide further illumination regarding the similarities of the 

[t] for /t/ and [t] for /k/ productions. Another point of interest is the dispersion of rating, 

as shown by the boxes (i.e., the interquartile range) in Figure 7. The spread in data is 

significantly greater for the intermediate transcription categories [t:k] and [k:t] than for 

the [t] and [k] categories. This finding highlights the utility of VAS in more sensitively 

classifying the differences between intermediate productions than traditional phonetic 

transcription.  

3.1.2 Individual listener differentiation between transcription categories 

The  next  analysis  examined  the  extent  to  which  individual  listeners’  ratings  

differentiated among the six types of productions: [t] for /t/, [t] for /k/, [t:k], [k:t], [k] for 

/t/, and [k] for /k/. To examine this, individual one-way ANOVAs were conducted 

separately  by  listeners.  Each  listener’s  rating  was  the  dependent  measure  in  his/her  own  

ANOVA, and transcription category was the predictor variable. Post-hoc Scheffe tests 

were used to derive homogeneous subsets. Homogeneous subsets are subsets of the data 

which differ from other subsets significantly. They are defined relative to the independent 

variable. If a listener had perfect differentiation among the six stimulus types, then he/she 

would have six homogeneous subsets, corresponding to the ratings for the six stimulus 

types. If a person had only one homogeneous subset, then the person would have no 

differentiation among the six stimulus types.   

All of the individual-subjects ANOVAs were statistically significant, indicating 

that  each  listener’s  ratings discriminated among at least two of the transcription 

categories. The number of homogeneous subsets varied across was either 2 (14/47 



 

  38 

listeners), 3 (26/47 listeners), or 4 (7/47 listeners). The specific categories that were 

distinguished within the homogeneous subsets varied. In general, most of the two-

category  listeners’  judgments  differentiated  between  sounds  transcribed  as  [t]  or  [t:k]  and  

those transcribed as [k] or [k:t]. Most of the three-category  listeners’  judgments  

differentiated between [t], [k], and intermediate productions. There was no clear pattern 

for the four-category listeners. This means that for greater than 2/3 of the listeners, the 

ratings were more informative than a simple two-category transcription system. The 

distribution of two-, three- and four-category listeners differed significantly across the 

three versions of the experiment, F2
[df=4]=10.895, p=0.028. There were a greater 

proportion of two-category listeners in experiment B than in the other two versions. The 

reason for this is not immediately apparent, and suggests that a more rigorous analysis of 

the psychometric equivalence of the three versions of the experiment is warranted. It may 

be that the stimuli in Version B are inherently less ambiguous than those in Versions A 

and C.    

3.1.3 Listener intra-rater reliability 

Within each experiment version (A, B, C), 20 productions from different talkers 

were repeated to gauge intra-rater reliability. For each of the 47 listeners, three measures 

of intra-rater reliability were obtained: average distance in click location between the two 

presentations of the same token, correlation between the two click locations, and the 

percentage of ratings of the 20 repeated tokens that fell within 15% of the entire line 

distance. For listener reliability measures, the click location along the visual analog scale 

were  transformed  to  range  from  0.0  (the  “t”  sound)  to  1.0  (the  “k”  sound).  Average  
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distance between click locations along the visual analog scale for sets of repeated tokens 

ranged from 0.08 to 0.27, mean = 0.14, standard deviation = 0.04. In other words, 

listeners’  two  click  ratings  of  the  same  token were on average within 14% of the total 

VAS line length apart. Correlation between click ratings of repeated tokens within 

listeners ranged from 0.47 to 0.97, mean = 0.79, standard deviation = 0.12. A third 

measure of intra-rater reliability determines what proportion of repeated token pairs was 

rated within 15% of the VAS line length. This value ranged from 0.45 to 0.90, mean = 

0.68, standard deviation = 0.12. On average, only 68% of token pairs were rated within 

15% of the VAS line from each other, a somewhat poor level of intra-rater reliability.  

 It is to be expected that some listeners have higher levels of intra-rater reliability 

than others. A linear regression model was applied to determine if intra-rater reliability 

Figure 8: Intra-rater average distance between ratings for repeated tokens 



 

  40 

was predicted by experiment version, listener age, or listener sex for each of the three 

intra-rater reliability measures. Listeners were significantly more reliable on the average 

distance measure in Version A (p < 0.01) than Version B or C. Women were  

somewhat more reliable than men (p = 0.055), and older participants were significantly 

more reliable than younger participants (p < 0.05). Upon inspection of the plots of age 

against reliability (Figure 8), it was determined that three outliers representing older ages 

with very low distance between click locations (more reliable) may have been driving 

this relationship.  

To correct for this phenomenon, age was converted to a logarithmic variable 

(logAge). Using the variable logAge, along with experiment version and sex to predict 

average difference in click location, logAge was no longer a significant predictor of 

reliability (p = 0.068) while sex approached significance (p = 0.051). Correlation between 

click responses for repeated tokens varied significantly by experiment version. Version A 

had the highest correlation between clicks, compared to Version B (p < 0.01) and Version 

C (p < 0.01). Sex was not a significant predictor of correlation between click locations (p 

= 0.24) while logAge was (p < 0.05). The measure of proportion of repeated responses 

within 15% of the total VAS line length also varied by experiment, although not as 

strongly as for distance between clicks and correlation between click location. Version A 

reliability ratings differed from Version C (p < 0.05), but not from Version B (p = 0.13). 

Neither sex (p = 0.57) nor logAge (p = 0.09) predicted this reliability measure.  

3.1.4 Set effects 

Across the three experiment versions (A, B, C), all productions from one talker, 
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051L, were included to determine whether set effects were present (Table 10). We were 

able to determine whether there was a significant difference between the aggregated 

responses  to  one  talker’s  speech  due  to  the  influence  of  the  other  stimuli  present  in  that 

experiment version. A linear mixed-effects model was applied to see if VAS ratings for 

051L varied by experiment version. Overall, there was no main effect for VAS ratings by 

experiment version. When transcription category was added to the model, an interaction 

was observed between experiment version and transcription category for VAS ratings. 

This means that some transcription categories were rated differently depending on the 

experiment version. 

Figure 9a 
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Figure 9b 
 

 
 
Figure 9c 
 
Figure 9: Ratings of common talker 051L (green, left boxes in pairs) compared to 
unique talkers (right boxes in pairs) by transcription category 
 

3.2 Talker results 

Analysis of the talker-related data, i.e. child-level variables, serves a twofold 



 

  43 

purpose. First, child-level factors can determine predicting factors for “accuracy” (table 

1) as well as robustness of contrast in /t/-/k/ production to characterize the developmental 

trajectory of this sound contrast. This comparison is important to illuminate the 

differences between VAS ratings and transcription accuracy that can validate VAS as 

meaningful tool in clinical and research purposes. Second, it allows for comparison 

between predictors of sound accuracy and predictors of robustness of contrast to identify 

differences in sensitivity between transcription and VAS ratings. In this section, talker-

related variables are discussed, the dependent measures of accuracy and slope are 

explored, and correlations and linear-regression models among child-level variables are 

presented.  

3.2.1 Dependent variables: Slope and accuracy 

Two talker-related dependent measures were identified: target accuracy (asinAcc) 

and  slope.  The  first  measure,  accuracy  was  derived  from  trained  transcriber’s  phonetic  

transcriptions of the productions.  Accuracy  was  determined  by  the  percentage  of  a  child’s  

productions  that  were  phonetically  transcribed  within  the  target  stop’s  category  (see  table  

1). For example, transcriptions of [t] and [t:k] were both counted as accurate for target /t/, 

but incorrect for target /k/. Likewise transcriptions of [k] and [k:t] were counted as 

accurate for target /k/, but incorrect for target /t/. Because it has been documented that in 

proportional scales, variances are correlated with means, and data are not normally 

distributed around the mean, a rationalized arcsine transform was applied to percent 

accuracy data (Studebaker, 1985). This transform yielded the dependent measure 

“asinAcc”,  which  is  more  suitable  for  statistical  analysis.   
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𝐴𝑈 = sin 𝑠
𝑁 + 1 + sin 𝑠 + 1

𝑁 + 1 

then 

𝑅𝐴𝑈 = 146
𝜋 ⋅ 𝐴𝑈 − 23 

The second dependent measure, slope, was derived from listener VAS ratings to 

provide a measure of listener-defined robustness of contrast. This measure was calculated 

for each child by plotting histograms of the listener ratings for attempts at target /t/ and 

attempts at target /k/ (left panes, Figure 10). The x-axis shows click location along the 

VAS (-1.0 to 1.0). The bottom histogram in each plot shows where on the VAS the 

talker’s  attempts  at  /k/  were  rated,  and  the  top  histogram  shows  where  on  the  VAS  the  

talker’s  attempts  at  /t/  were  rated.  A logistic regression was applied to fit the best curve to 

these data. The slope of this curve yields the dependent  measure  “slope”.  Higher  positive  

slope values represent a more robust contrast between /t/ and /k/ productions, where 

attempts  at  /t/  were  rated  toward  the  “t”  end  of  the  scale  and  attempts  at  /k/  were  rated  

toward  the  “k”  end  of  the  scale.  Lower values (including negative values) represent a less 

robust contrast. The y-axis represents the probability that a given click location on the 

VAS corresponded to an attempt at target /t/. Examples of curves for five children, with a 

representative range of slope values are presented below (Figure 10). The accuracy 

measure is not represented graphically in these plots, but included in the plot titles to 

compare the slope and accuracy measures for each talker. The talkers shown range from 

least robust contrast (Figure 10a and 10b) to most robust contrast (Figure 10i and 10j) as 

determined by slope. Robustness of contrast, characterized by the separation between 
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VAS ratings for productions of target /t/, compared to productions of target /k/, can also 

be observed within the context of density curves. In these plots, listener VAS ratings are 

represented along the x-axis while click frequency is shown on the y-axis. Two curves 

are shown on each density plot, one for productions of target /t/, and one for productions 

of target /k/. More robust contrasts are represented by curves with less overlapping area 

between the /t/ and /k/ curves. Side-by-side representations of logistic curves and density 

curves are presented for each of the five talkers. 

 
Figure 10a 

 
Figure 10b 

 
Figure 10c 

 
Figure 10d 
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Figure 10e 

 
Figure 10f 

 
Figure 10g 

 
Figure 10h 

 
Figure 10i 

 
Figure 10j 

Figure 10: Side-by-side representations of logistic curves (left) and density plots 
(right) derived from listener VAS ratings for five children. Talkers shown in top to 
bottom order of least robust contrast (smallest slope values) to most robust contrast 
(largest slope values).  
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Of the two dependent measures, target accuracy as determined by phonetic 

transcription is the more traditional measure in both research and clinical contexts. 

However slope, obtained through VAS ratings, is a more granular measure, i.e., one that 

has more potential values. Slope is thus a potentially more sensitive measure to determine 

contrast acquisition than accuracy. This can be observed in comparing Figure 10g and 

10h (talker 646L) with Figure 10i and 10j (talker 133L). Both talkers were transcribed to 

100% accuracy, meaning that transcription category matched the target category for all 

productions. However talker 133L has a steeper slope (slope = 4.47) than talker 646L 

(slope = 2.56). Clearly there are differences in listener perception of these two talkers that 

are overlooked through use of phonetic transcriptions alone. 

Figure 11:  Comparison of asinAcc and listener-derived slope 
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Across all talkers, accuracy predicts slope, however these two measures of speech 

production are nonlinearly related. As shown in Figure 11 and Figure 12, transcribed 

accuracy is more bounded than slope, condensing the data with higher accuracy. Slope, 

however, is able to differentiate between the talkers with high transcribed accuracy. 

These data support the finding that VAS is a tool that is more sensitive to robustness of 

contrast than traditional phonetic transcription.  

3.2.2 Predictors of slope and accuracy 

Having identified and established the dependent measures of slope and asinAcc, 

as well as the input and output independent measures, we can begin to look at what 

factors predict our two measures of speech production. Descriptive correlations and 

mixed-effects linear regression models are presented below. 

Figure 12: Comparison of transcribed accuracy (percent) and listener-derived slope 
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3.2.3 Descriptive correlations 

Two tables of descriptive correlations are presented below: Table 12 shows full 

correlations and Table 13 shows partial correlations, where variables have been 

residualized for age. In both tables, slope is significantly correlated with age. 

Additionally, all vocabulary measures (EVT, PPVT, CDI) are significantly correlated 

with slope and accuracy, however these relationships are stronger in the full correlations 

than the partial correlations. 

 
Table 12: Full correlations between independent and dependent variables, including 
the effect of age on each variable. Coefficient estimate is shown, with significance * 
= p < 0.05, ** = p < 0.01 

Full Correlations 

Control Variables Age Slope asin Acc 
Age Slope -.394**     

asinAcc .369** -.883**   
FruitStroop .196 -.206 .172 
BRIEFGlobal 
Percentile .116 .056 -.099 

MinPairs .221 -.065 .040 
EVT_Raw .322* -.371** .378** 
EVT_Stnd .023 -.277* .313* 
EVT_GSV .319* -.374** .385** 
PPVT_Raw .388** -.405** .430** 
PPVT_Stnd .144 -.329** .368** 
PPVT_GSV .387** -.410** .435** 

CDIProduce .298* -.456** .425** 

WordsPer 
Hour -.063 -.006 -.044 

CTCPer Hour -.069 -.028 -.025 

Meaningful .009 -.023 -.079 
MatEdOrdil -.210 -.040 .022 
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Table 13: Partial correlations between independent and dependent variables, 
without the effect of age on each variable. Coefficient estimate is shown, with 
significance * = p < 0.05, ** = p < 0.01 

Partial Correlations 
Control 
Variables 

Slope asinAcc 

asinAcc -0.864**   
Fruit Stroop -.142 .109 

BRIEF 
Global 

Percentile 
.112 -.153 

Min Pairs 
.024 -.046 

EVT Raw -.281* .294* 
EVT Stnd -.292* .327** 
EVT GSV -.285* .303* 
PPVT Raw -.298* .335** 
PPVT Stnd -.300* .342** 
PPVT GSV -.304* .341** 

CDI 
Produce -.386** .355** 
Words 

PerHour -.034 -.022 
CTCPer 

Hour -.060 .001 

Meaningful -0.021 -0.089 
MatEdOrdil -.137 .109 

 

3.2.4 Linear regression models 

After inspecting the descriptive correlations, linear regression models (using the lmer 

package in R software) were analyzed to further determine what independent measures 

are statistically significant in determining slope and accuracy. Age was kept as a variable 

in every model, however the independent variables found to be correlated with age were 



 

  51 

residualized for the effect of age. The coefficient estimates, t-values, and p-values are 

provided for the measures found to be significantly correlated with speech production 

(Table 14).  

Table 14: Coefficient estimates and standard error, t-values, and p-values for three 
linear regression models, using the three predictor variables shown to correlate with 
speech production, for both slope and asinAcc. 
 Slope (derived from LMER) Accuracy (asinAcc) 
 Estimate Stnd 

Err 
t val p val Estimate Stnd 

Err 
t val p val 

Intercept 2.04 1.38 1.48 0.14 17.80 22.87 0.78 0.44 
Age -0.15 0.04 -3.47 <0.01 2.26 0.67 3.23 <0.01 
EVT_GSV -0.02 0.01 -2.31 0.02 0.43 0.18 2.47 0.02 
Intercept 2.04 1.37 1.49 0.14 17.80 22.58 0.79 0.43 
Age -0.15 0.04 -3.29 <0.01 2.26 0.69 3.27 <0.01 
PPVT_GSV -0.02 <0.01 -2.47 0.02 0.42 0.15 2.81 <0.01 
Intercept 2.04 1.33 1.54 0.13 17.80 22.44 0.79 0.43 
Age -0.15 0.04 -3.60 <0.01 2.26 0.69 3.29 <0.01 
CDI_Produce <-0.01 <0.01 -3.24 <0.01 0.04 0.02 2.95 <0.01 
 

From the linear regression models, it is clear that all three vocabulary measures 

(EVT_GSV, PPVT_GSV, and CDI_Produce) are significant in predicting both measures 

of speech production. The remaining output predictor variables, MinPairs, Fruit Stroop, 

and BRIEF global percentile, were not significant in predicting speech production. The 

input related measures (MatEd, WordsPerHour, CTC Per Hour, Meaningful, AWC 

Percentile) also did not predict speech production measures. 

Beyond identifying significant predictor variables for the speech production 

measures, Table 14 allows for direct comparison between t-values and p-values of the 

slope measure to those of the asinAcc measure. These values are similar across the 

models predicting the two different dependent measures, showing slope and asinAcc are 
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roughly equivalent measures for modeling  relationships  among  components  of  a  child’s  

language and communication system. 

4 Discussion 

The first aim of this study was to develop and validate a clinical tool for assessing 

children’s  /t/-/k/ production that reflects the established gradual nature of contrast 

acquisition. This was done through collecting VAS ratings from 47 adult naïve listeners, 

presented with consonant-vowel sequences produced by 63 children representing a range 

in language-related skills and measures. A measure of listener-defined robustness of 

contrast, slope, was compared to the phonetic transcriptions assigned by trained 

transcribers. Aggregated VAS ratings demonstrated that listeners were able to 

differentiate the following transcription categories using a VAS: [k] for /k/, [k] for /t/, 

[k:t], and [t:k]. Listeners differentiated [t:k] from [t], however rated the [t] for /t/ 

productions similarly to the [t] for /k/ productions, perhaps due to oversampling of true 

substitutions. Ratings for the intermediate categories, [k:t] and [t:k], were found to be 

more distributed along the VAS than non-intermediate categories. This finding supports 

the claim that VAS lends a specificity in rating sounds which phonetic transcription is not 

able to provide. Individual listener ratings were analyzed, and greater than 2/3 of listeners 

were able to differentiate between at least three transcription categories. For these 

listeners, VAS ratings were more informative than a two-alternative forced choice rating 

system.  

The methodological question of intra-rater reliability was also addressed. Three 

measures of intra-rater reliability were described: average distance in click location 
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between repeated tokens, correlation between click locations of repeated tokens, and 

proportion of repeated tokens that were rated within 15% of the total VAS length from 

each other. Listener age and sex contributed somewhat to predicting the different intra-

rater reliability measures, although not in consistent ways across the three measures. 

Overall, listeners had poor to fair intra-rater reliability. Currently, no standard for 

determining  a  listener  to  be  “reliable”  exists.  These data will help us develop a better idea 

of what counts as a reliable listener and what characteristics contribute to the likelihood 

of a listener counting as reliable. Set effects were pervasive in analysis of listener data. 

The questions of listener reliability and influence of surrounding stimuli will continue to 

hold great importance as VAS rating becomes more widespread in clinical and research 

environments. 

The second aim of this study was to identify child-level predicting factors for 

differentiation of similar articulatory gestures for /t/ and /k/. This was done through 

collection of a host of output (vocabulary, executive function, speech perception) and 

input (home language environment, maternal education, late talker status, dialect) 

measures. Through descriptive correlations and linear regression models, vocabulary size 

(measured via EVT, PPVT, CDI) was determined to be the only significant predictor of 

the speech production measures. This finding supports other reports of the relationship 

between vocabulary size and phonological knowledge in the literature (Edwards, 

Beckman & Munson, 2004). However, this study and work by Nicholson (2014) are the 

first to demonstrate the effect of vocabulary size on speech production rather than higher-

level phonological knowledge. 
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 Additionally, this thesis described the listener-defined robustness of contrast 

measure, slope, and compared it to the more traditional measure of transcribed accuracy. 

As dependent variables, slope and asinAcc are predicted similarly in linear regression 

models with both input and output independent variables. This occurrence raises the 

questions of whether slope is just a more time consuming and difficult to compute 

measure of accuracy. However, slope is clearly informative to differentiate among speech 

production abilities of talkers with high transcription accuracy. Slope describes the 

degree in overlap of listener perception between productions for contrasting targets with 

much finer granularity than accuracy. This is especially true for talkers with high 

(approximately greater than 85%) transcribed accuracy. 

4.1 Contributions to the literature 

This study provides support to the growing body of evidence that speech sound 

contrasts are acquired gradually. Further, sound productions contain more information 

about  a  child’s  phonological  output  knowledge  than  phonetic transcription can encode. 

Therefore, rating speech sounds along a VAS is a more appropriate and informative 

measure of speech production than phonetic transcription in both clinical and research 

environments. This study provided an introductory perspective into the methodological 

factors in utilizing VAS, including intra-rater reliability and the influence of surrounding 

stimuli on perception. Finally, this study built upon evidence to establish vocabulary size 

as a key predictor in speech sound differentiation for the /t/-/k/ contrast.  
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4.2 Limitations 

This study contained several limitations. First, the number of listeners in each 

experiment version, off of which all perception ratings were analyzed, was limited (15 to 

16 listeners per experiment version). Additionally, some listeners had exposure to 

languages other than English, or did not pass a hearing screening at all frequencies 

presented. At the writing of this thesis, perception testing is ongoing to collect the ratings 

of at least 20 listeners in each experiment version, who more fully meet the inclusion 

criteria of this study. Additionally, strong set effects were observed on VAS ratings and 

intra-rater reliability. The set effects indicate that tokens included in the three experiment 

versions may not have been distributed in a balanced manner.  

4.3 Future directions  

This introduces many avenues of further exploration. Future directions are 

suggested for both listener- and talker-related questions. 

4.3.1 Listeners 

Future directions to this research should investigate the clinical and research 

significance of the different intra-rater reliability measures. Studies should examine 

further what characteristics predict listener reliability, and whether reliability can be 

trained. These studies could identify the smallest set of listeners needed to get reliable 

VAS ratings. Another route for future perception studies would be to examine whether 

VAS ratings of trained listeners (such as speech-language pathologists experienced in 

judging  children’s  speech  accuracy) would prove to be more informative in models 
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predicting speech production than those of naïve listeners.  

4.3.2 Talkers 

Relationships among the input and output predictor variables merit further 

investigation  to  better  characterize  children’s  language  development. Future studies 

should continue to model a variety of speech and language skills, including measures of 

vocabulary size. These studies can begin to answer questions regarding the effect of 

vocabulary interventions for children with speech and language delays and disorders. 

Additionally, the specific clinical implications of the slope value warrant further 

investigation.  

The input predictor variables of status as a late talker and dialect were not fully 

explored in this thesis. Further work should explore whether these variables predict 

measures of speech prediction beyond the contributions of age and vocabulary size. 

A large number of additional talkers have been recorded as part of the Learning to 

Talk project. Future perception studies should include speech productions from this larger 

set of talkers. A number of parallel perception studies involving other sound contrasts 

(/s/-/∫/, /d/-/ɡ/) are in progress by this group of researchers. Comparing results of all 

perception studies using the same set of talkers and predictor measures will allow us to 

determine if certain child-level factors are more predictive of one sound contrast, more 

than the other contrasts. Finally, acoustic analyses on all productions included in this 

study are currently being performed as the focus of Johnson (in progress). Identifying 

specific acoustic markers corresponding to the different transcription categories and VAS 

ratings  will  contribute  to  the  body  of  knowledge  on  children’s  speech  development. 
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6 Appendix A: Burst tagging manual 

Purpose 
 
The purpose of burst tagging is to identify and label the exact point of the stop burst 
release in word-initial velar (/k,g/) and alveolar (/t,d/) stops. Before tagging burst events, 
the following steps have taken place: child was recorded during real word repetition task, 
segmentation of word repetition recording has been performed, segmentation has been 
checked. After burst events have been tagged, the following activities may proceed: 
acoustic analysis of the burst window (5ms before the burst tag to 20ms after the burst 
tag), extraction for use as stimuli in a perception experiment (15ms before the burst tag to 
150ms after the VOT tag).  
 
Manual edited by Sara Bernstein and Allie Johnson in Spring 2015, adapted from original 
manual by Eunjong Kong and Tim Arbisi-Kelm. 
 
Burst tagging is performed in Praat software using custom-written scripts developed by 
the Learning to Talk team. 
 
Praat Settings 
 
a. Set the dynamic range in Praat to 40 dB from the menu "Spectrum->Spectrogram 
settings..." 
b. Set the pitch range in Praat to 2000-2500 Hz from the menu "Pitch->Pitch settings..." 
c. From the Intensity drop-down menu, make sure the setting "Show intensity" is 
engaged. 
d. From the Intensity drop-down  menu,  click  “Intensity  settings” and make sure the view 
range is 25 to 100 dB. 
 
Components of the tagging script 
 
Select a response to tag: Always select the first usable response (not overlapping with 
computer prompt, no clipping, no background noise, audible burst) 
Select the manner: Options are Stop, Affricate, Other (See section "Perceptual Judgment" 
below) 
Select the place: Will be somewhere along the /t/-/k/ or /d/-/g/ continuum or "other" (See 
section "Perceptual Judgment" below) 
Add notes to the BurstNotes tier (See sections "Notes Tier" below) 
Mark release of stop burst (See section "Tagging burst" below) 
Mark onset of vocal fold vibration, referred to in this context as "VOT" (See section 
"Tagging VOT" below) 
Perceptual Judgment 
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a) Decide on the "Consonant type", choosing from among: 
optionMenu("Consonant type", 1) 
option("Stop") 
option("Affricate") 
option("Other") 
option("NoResponseisTaggable") 
 
b) If it's tagged as consonant_type=="Stop" and the target is /t/, then choose from among: 
optionMenu("Stop place", 1) 
option("t") 
option("t:$k") 
option("$k:t") 
option("$k") 
option("other") 
or if it's tagged as consonant_type=="Stop" and the target is /k/, then choose from among: 
optionMenu("Stop place", 4) 
option("$t") 
option("$t:k") 
option("k:$t") 
option("k") 
option("other") 
 
c) If consonant_type=="Stop" or consonant_type=="Affricate" then tag the following 
events: 
burst 
VOT 
Tagging "burst" 
 
Tagging the Burst 
 
Locate the burst onset in the waveform, mark the burst onset by clicking in the 
corresponding location in the 'event' point tier, and then click 'Continue' 
a. Definitions: 
- burst = the "clump" or "clumps" of spikes that make up the transient of constriction 
release. 
- burst onset = the peak of the individual spike that is selected and marked to denote the 
beginning of the burst. Criteria for choosing this are presented below. 
-*peak*= a single spike or peak within the burst, which may or may not also represent the 
burst onset 
b. When one burst is present: 
- Find and mark the first peak, which is represented by the first clear deviation from the 
baseline waveform of the pre-burst closure (this peak can be either positive or negative 
amplitude). 
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- When the first peak is of questionable size (e.g., is followed by a much larger peak), 
find the intensity level of both peaks by placing the cursor at each peak and pressing 
<F8>. If the first peak is within 15 dB of the larger peak, then select the first spike as the 
burst; otherwise, mark the second peak as the burst. 
c. When two bursts are present: add protocol for double burst 
- First measure and compare the intensity of one of the highest-amplitude peaks within 
each of the two bursts. Are the intensity levels of these peaks within 15 dB of each other? 
- No= select the burst containing the peak with greater intensity, and follow instructions 
in part a. above. 
- Yes= are the peaks within 20 ms of each other? 
- Yes= select the first burst, and follow instructions in part b. 
- No= select the second burst, and follow instructions in part b. 
- NOTE: When bursts are more than 20ms apart, this first burst is often either the result 
of lip opening or a background noise. Further evidence indicating this will be an absence 
of frication between the two bursts: multiple bursts resulting from the constriction release 
will almost always be separated by slight frication, which continues after the final burst 
until it is replaced by aspiration of the wider aperture directly preceding voicing.  
d. When three or more bursts are present: 
- Again, first measure and compare the intensity of one of the highest amplitude peaks 
within each of the three bursts. After identifying the burst with the absolute highest 
amplitude peak of the three, select the earliest burst whose highest-amplitude peak does 
not measure below 15 dB of the absolute highest amplitude peak. If two adjacent burst 
candidates (i.e., with no intervening burst candidates) are more than 25 ms apart, follow 
the instructions above in part c. 
- NOTE: Recordings with a moderate level of background noise will sometimes render 
the intensity comparison uninformative. When this is the case, consult the spectrogram 
for burst evidence within a darker energy band (i.e., higher amplitude) spread across a 
relatively wide frequency range, and rely more heavily on the distance criterion (i.e., 
within 25 ms). 
e. When no burst is present: 
- Mark the burst onset at the point where the energy begins (e.g., frication resulting from 
incomplete closure) in the 'event' tier. 
- Label the event 'NB' (i.e., "no burst") in the 'eventNote' tier. 
 
Tagging "VOT" 
 
Locate the voicing onset in the waveform, mark it by clicking in the corresponding 
location in the 'event' point tier, and then click 'Continue'. 
a. Looking at the waveform and scanning rightward, locate the beginning of the first 
voicing cycle, indicated by an upward swing rising above the zero point. It also may help 
starting from the vowel and scanning leftward, until the point where the waveform 
becomes periodic (and more sinusoidal-looking). 
b. Often this upward deviation from the zero point is very subtle, and followed by a steep 
fall below the zero point. 
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c. Place the cursor as closely as possible to this point. Although the script will 
automatically move the cursor to the zero-crossing after you click 'Continue', you can do 
this manually by pressing <Ctrl+0> if you wish to test how close your marking is to the 
zero-crossing. 
d. Look at the spectrogram to see if this point aligns adequately with the voicing bar. 
- The 'voicing bar' is a row of striated energy in the very low frequencies, corresponding 
to the energy in the first and second harmonics (typically the strongest harmonics in 
speech). For men, this is about 100-150 Hz, while for women it can be anywhere between 
150-250 Hz, and of course there is lots of variation both within and between individuals. 
- If the upswing zero-point occurs much earlier than the voicing bar evidence, mark 
instead the next zero-point upswing to the right, even if it occurs after an initial 
downswing. 
e. prevoicing: when voicing begins before the burst  
- Mark the VOT at the beginning of the first voicing cycle, which now occurs before the 
first burst. 
- Directly beneath the point where you marked vot1, manually type in "pre-voicing" in 
the eventNote tier. 
- If the pre-voicing is not sustained--i.e., stops and then starts again--then in the event tier 
manually add the label 'vOff' at the point where voicing stops, and then 'vOn' at the point 
where voicing begins again. 
f. devoicing:  
- when there is partial devoicing, the waveform becomes slightly aperiodic, making it 
more difficult to isolate the voicing onset. In these cases there is no absolute "upswing" in 
the waveform to indicate the initiation of the voicing cycle; however, this complex 
waveform will still maintain an overall sinusoidal shape, and therefore the VOT should 
be marked at the first upswing of this "global rise". The voicing bar in the spectrogram 
should also be relied upon more heavily to locate VOT in these devoiced cases. 
- when there is complete devoicing, with no evidence of any periodicity in the waveform 
(or voicing striations in the spectrogram), then do not label VOT.  
 
Notes Tier 
 
Notes write to the BurstNotes tier. They are visible to stimulus selectors for perception 
experiments. Notes help other people looking at the textgrid, or yourself at a later time, 
understand why you selected a certain consonant type or place, why you labeled 
something as missing data, or any reservations you have about the usefulness of a certain 
production. 
Quiet: Burst is not audible  or extremely soft, or signal to noise ratio between background 
noise and burst is very poor 
Clipping: Peaks of the waveform are clipped, may also appear as striation in spectrogram 
BackgroundNoise: Could be a transient, talking, rattle, microphone noise, etc. It is 
especially important to note BackgroundNoise if the noise occurs within the perception 
stimulus window (15ms before burst to 150ms after VOT) 
Short VOT: refers to cases where the onset of vocal fold vibration falls within the burst 
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analysis window, i.e. the "VOT" tag is LESS THAN 20ms after the "burst" tag. 
Technically, the stimulus preparation scripts will automatically pass over these stimuli 
with or without the "Short VOT" tag, but it is useful to have it in the textgrid. 
OverlappingResponse: This refers to cases when the child begins 
Devoiced vowel: This tag should be used when the vowel is completely 
devoiced/whispered. When you use the "Devoiced vowel" note, you should not mark a 
VOT because there is no onset of vocal fold vibration. Sometimes the vowel is partially 
devoiced, in which case you do NOT use this note, and just place the "VOT" tag where 
the vocal folds begin vibration. The "Devoiced vowel" note is only for fully devoiced 
vowels. 
Deleted: Use the "Deleted" tag when the child omits the initial stop consonant, for 
example "at" for "cat". In these cases, tag manner as "Other" (which means you do not 
select a place of articulation) and select the "Deleted" note. 
Additional notes: You may also add in any text you would like in the field 
"AdditionalNotes". These could include marking when you are unsure how to tag a 
production 


