How a cross-linguistic study of phonological development can inform clinical practice

ASHA, 2011

Jan R. Edwards, Mary E. Beckman, and Benjamin Munson

Please come to the front of the room and sign out a response clicker – thanks!!!

How a cross-linguistic study of phonological development can inform clinical practice

ASHA, 2011

Jan R. Edwards, Mary E. Beckman, and Benjamin Munson

NIDCD grant RO1 02932 to Edwards and NSF grants BCS 0729140, 0729306, 0729277 to Edwards, Beckman, & Munson

A complex web of collaborators

A complex web of collaborators

A complex web of collaborators

Why you should stay

The million dollar question:

How is a study of phonological acquisition across languages informative for clinical practice in the United States?

Our original motivation

• Do children learn sounds or do they learn sounds in words?

What did we learn?

• Children learn sounds in words.

What *else* did we learn?

- We can't rely only on transcription because:
 - There are language-specific differences in perception.
 - All incorrect productions are not the same.
 - All correct productions are not the same.
 - Children are learning more than simply how to produce speech sounds correctly.

Methods

- <u>Languages</u>: English, Cantonese, Greek, Japanese, (Korean, Mandarin)
- <u>Target consonants</u>: word-initial lingual obstruents
- <u>Procedure</u>: Auditory word-repetition task
- <u>Participants</u>: 100 2- to 5-year olds for each language.
- Analysis:
 - Transcription
 - Acoustics
 - Naïve speaker perception

Example stimuli for /k/ in English

Example stimuli for /k/ in Japanese

[k^je:ki]

[kuma] [kubi]

[kuruma]

[koara]

Result 1: Children learn sounds in words

Result 1: Children learn sounds in words

- Cross-linguistic differences in phoneme frequency do not explain all language-specific patterns.
- Sibilant fricative contrast in Japanese acquired later than similar contrast in English, although phoneme frequencies are similar (Li et al., 2010).

• Why is /s/ produced with such low accuracy by Japanese-speaking 2- and 3- year olds?

• Why is /s/ produced with such high accuracy by English-speaking 2- and 3- year olds?

- English:
 - /s/ is mastered earlier than /ʃ/
 - **[s]** is substituted for **//**/

shoe

safe

- Japanese:
 - /ʃ/ is mastered earlier than /s/
 - [f] is substituted for /s/

 Shukurimu "cream puff" semi "cicada"

• Question:

Are there differences in how adult native speakers of English and Japanese perceive children's /s/ and /ʃ/ productions?

• Participants:

- English speakers (Minneapolis, MN))
- Japanese speakers (Tokyo, Japan)

• Stimuli:

- CV sequences
- Correct productions of /s/ and /ʃ/ and prototypical
- substitutions of children in each language.
- Task: Is it an /s/? Is it an /ʃ/?

- English listeners: Larger acceptable range for /s/
- Japanese listeners: Larger acceptable range for /ʃ/

Problems with transcription.

- 1. Depends on listener's experience and expectations.
- 2. Children do not progress directly and categorically from incorrect to correct productions.
 - All incorrect productions are not the same.
 - All correct productions are not the same.

-Transcription analysis: We observed many intermediate productions.

-English: [k] or [g]

[f] or $[\theta]$

-Greek: [k] or [t] ◀€

[s] or $[\theta]$

• Question:

- Can naïve listeners reliably categorize productions as intermediate between /s/ and / θ / (Schellinger et al., 2008)?

• Participants:

naïve adult listeners

• Stimuli:

- -200 CV sequences.
 - correct /s/
 - [s] for θ
 - intermediate: closer to [s] than $[\theta]$
 - Intermediate: closer to $[\theta]$ than [s]
 - $[\theta]$ for /s/
 - correct θ

Speech-language pathologists do it better! (Munson, Johnson, & Edwards, 2010)

Subject of the street of the s

Their responses better differentiate among transcription categories

They don't have as strong a bias to label sounds as 's'

They have superior intrarater reliability

Holliday et al., 2010

• Question:

 Do naïve listeners rate productions from children with steep slopes differently than productions from children with shallow slopes (Sovinski, 2011)?

• Participants:

- naïve adult listeners
- Method: Direct magnitude estimation

• Speech sounds encode at least two kinds of

information:

- -Lexical information
- Socio-indexical information

•Mandarin has two post-alveolar fricatives:

- •Onset F2 frequency (y-axis):
 - ➤ Differentiates /ç/ and /ş/
- •Centroid frequency (x-axis):
 - ➤ Used for socio-indexical coding for /ç/.

- •Difference between /ç/ and /ş/ is greater for women than for men.
 - •Without fem. accent:
- •With fem. accent:

Boy:

Girl w/o F.A.

Girl w/F.A.

Munson & Baylis, 2007

- Children learn to mark their gender through phonetic variation.
- 3- 7-year-old boys with phonological disorder were rated to sound less boy-like than age peers.

More girl-like

→ More boy-like

What did we learn?

1. Children learn sounds in words.

What *else* did we learn?

- We can't rely only on transcription because:
 - 2. There are language-specific differences in perception.
 - 3. All incorrect productions are not the same.
 - 4. All correct productions are not the same.
 - 5. Children are learning more than simply how to produce speech sounds correctly.

Back to the million dollar question

How can these results inform

clinical practice???

Levels of knowledge about speech sounds

• Result 1: Children learn sounds in words.

• Need to consider the words a child knows as well as the sounds he/she knows.

• Children with phonological disorders have smaller vocabularies than their typically developing peers.

- <u>Result 2</u>: We can't rely only on transcription:
 - -There are language-specific differences in perception.

• Transcription is influenced by listeners' linguistic experience (and expectations).

- Result 3-4: We can't rely only on transcription:
 - -All incorrect productions are not the same.
 - All correct productions are not the same.

- Result 5: We can't rely only on transcription:
 - -There's more to phonological development than phonemes.
- Some language disorders characterized by difficulties understanding social cues.
- Many social cues are signaled by sociophonetic features.

• How can we supplement transcription?

- Clinicians are good at hearing intermediate productions.
- VAS and DME are not difficult to use in clinical practice.

Acknowledgments

- Help with local arrangements: Catherine McBride-Chang, Katerina Nicolaidis, Areti Okalidou, Kiyoko Yoneyama
- Support from NIDCD Grant 02932 and NSF Grants BCS 0729140, 0729306, and 0729277
- Participation of the children and cooperation from their parents For all of which, a heartfelt:

謝謝 thank you ευχαριστώ πολύ ありがとう