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Overview

> The computation of spectral features that cue segmental contrasts 1s a process
of dimensionality reduction. Traditional approaches accomplish this reduction by
mapping a high-dimensional observation (e.g., a spectrum) to a small number of
pre-determined features (e.g., spectral moments; Forrest et al., 1988). Such ap-
proaches fail to exploit the distributional structure of the observations in the high-
dimensional space and typically ignore superposing relationships among the obser-
vations, such as the word in which the segment occurs.

> This study adapts the Laplacian Eigenmaps algorithm (Belkin & Niyogi, 2003;
Bengio et al., 2003) to learn acoustic features for /t/ versus /k/, consonants that
contrast In terms of spectral shape and that differentially exhibit vowel-contextual
variation in their spectral shape (see Fig. 1)). The algorithm constructs a graph
that simultaneously represents the high-dimensional structure of excitation patterns
computed from a talker’'s productions, and aligns lexical correspondences between
talkers. A function that embeds the excitation patterns into a two-dimensional
feature-space Is learned by computing the eigenvectors of the constructed graph.

Speech Production Data

> 21 adults (10 women, 11 men) completed a picture-prompted word repetition task.

> Two lists of words were used to elicit a variety of target consonants. Each list
contained 32 words in which a target /t/ or /k/ occurred word-initially before a
vowel (see footer at bottom for the stop-initial words in the two lists).

> Participants A50—A65 completed Lists A and B; participants A66—A70, only List A.

> Training set: List A productions by participants A50-A65 (N = 493).
> Test sets: List B from A50-A65 (N = 447); List A from A66—-A70 (N = 156).

> Multitaper spectra were estimated from 25-ms windows around stop bursts, and
then passed through an auditory (gammatone) filter bank, yielding excitation patterns.
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Figure 1. Excitation patterns computed from participant A54's productions of /t/

versus /k/ before the vowels /1/ (left panel) and /ou/ (right panel). The dotted lines
iIndicate a subset of the values used to compute the Kullback-Lelbler divergence.

Laplacian Eigenmaps Algorithm

L. Let X = {xq,..., Xp} be the training set of 493 excitation patterns (361-dimensional vectors).
Each x; I1s pre-processed to sum to 1, so that it may be treated as a probability mass function.

2. Define a similarity function S on X in terms of Kullback-Leibler divergence Dk (see Fig. [1)).
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3. Define a function W on X that induces a weighted graph. Nodes correspond to observations in X (see
diagram below, where {xy, X0, x3} versus {xs, x5} represent productions by different talkers). Edges
connect nodes corresponding either to productions by the same talker (solid lines) or to productions
of the same target word by different talkers (dashed lines). Edge weights encode similarity between
excitation patterns. Parameter u € (0, 1) adjusts the balance between preserving the structure of
each talker's production-space and aligning multiple talkers’ production-spaces.
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4. Construct the graph’s weighted adjacency matrix A, degree matrix D, and Laplacian matrix L.
D;; = ZJ'A/,]

5. Solve the generalized eigenvalue problem Ly = AD-y. The eigenvectors A1, \» that correspond to
the two least, non-zero eigenvalues embed X into 2-dimensional space: x; — (A1[/], Ao[/]).

A,‘JZW(X,‘,XJ') L=D—A

6. Extend eigenvectors A1, s to eigenfunctions A1, Ao. The projection A, (x’) of a test data point
x" ¢ X onto dimension k of the embedding is a linear combination of the components of .

M (X) =DMl WX, x)
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Eigenvector Embedding of Training Data (A50-A65, List A)
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Discussion and Future Directions

> T he two-dimensional embedding that is learned by Laplacian Eigenmaps reflects well-
established articulatory constriction features: \; distinguishes /t/ versus back-vowel
/k/, reflecting place of constriction (anterior versus posterior); A, distinguishes /t/
versus front-vowel /k/, reflecting tongue shape (apical versus domed).

> We plan to extend this method to develop dynamic spectral features that model
the transition from a stop burst to a vowel (see Nossair & Zahorian, 1991).

Word List A: tickle, tent (2x), teddy bear (2x), table, take, tape, tooth, toothbrush, toast, toaster, tongue (2x), tummy, tiger, kitty, kitchen, keys,
cake, cat, candle, candy, catch, cookie (2x), comb, coat, coffee, car, cup, cutting. (Italicized words are unique to Word List A.)

Word List B: teacher, tickle, tent, teddy bear (2x), table, take, toothbrush, toast, toaster (2x), tongue, tummy (2x), tiger, towel, kitten (2x), keys,
cake, cat, candle, candy (2x), cookie (2x), comb, coat, coffee, cup, cutting, cousin. (Boldface words are unique to Word List B.)
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