

Contrast and covert contrast in the acquisition of /s/ and /ʃ/ in English and Japanese

Fangfang Li (cathy@ling.ohio-state.edu) and Jan Edwards (jedwards2@wisc.edu) Department of Linguistics, the Ohio State University; Department of Communicative Disorders, the University of Wisconsin-Madison

/1/

∫i sheep

ſo

ſu

Sample

words

shot

shell

shoe

shoulder

Sample

words

soap

/s/

si / seat

su soup

INTRODUCTION

[Acquisition of voiceless sibilant fricatives]

- Late acquisition across languages (Jacobson 1968, Templin 1957, and Stoel-Gammon & Dunn 1985)
- Opposite error patterns in English and Japanese English: /ʃ/ → [s] (Prather et al, 1975; Ingram 1981) Japanese: /s/ → [ʃ] (Nakanishi et al., 1972)

[Covert Contrast]

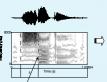
- Covert contrast: perceptually indistinguishable, but statistically significant acoustic difference (e.g., Macken & Barton 1979; Scobbie et al., 1996, among others)
- Baum & McNutt (1990): covert contrast in both amplitudinal and spectral manifestations between frontal /s/ and target /θ/ in the productions of misarticulating children.
- Tsurutani (2004): covert contrast was found between target /ʃ/ and error [ʃ] in 5 Japanese-acquiring children.

ANALYSES

[Native Speaker transcription]

- Native speaker transcription done by one native speaker
 Second native speaker independently transcribed 10% or
- Second native speaker independently transcribed 10% of the utterances, with 90% inter-transcriber reliability

[- -----


- Articulation:
- /s/ -> shorter front cavity
- /J -> longer front cavity
- Acoustics: energy distribution
- /s/ -> more energy in high-frequency /**J**/ -> more energy in low-frequency

[Acoustic Parameters]

F

A

C tr

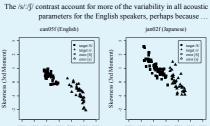
OnsetF2		0 Free	Centroid 11025 quency (Hz)
уре	Acoustic Parameter	Definition	Articulatory Interpretation
ricative pectrum	Most Prominent Peak (MPP)	The frequency of the highest amplitude peak	Negative correlation with the length of
	Lowest Spectral Peak (LSP)	The frequency of the left edge of the energy prominence	front cavity
	Centroid (Cent)	1 st spectral moment (the weighted mean frequency)	
	Skewness (Skew)	3 rd spectral moment (frequency band above centroid minus frequency band below)	
mplitude	Amplitude Ratio (ampRatio)	The log ratio of the F2 peak amplitude to that of the high-frequency maximum	A measure of constriction degree
V ansition	Onset F2 Frequency (onsetF2)	The F2 frequency at the onset of the following vowel	Negative correlation with the length of back cavity

[Statistical test of the difference]

Used regression analyses to test whether these acoustic parameters are significantly different for the two fricative categories for each adult group and for each individual child.

[Objectives]

- To verify the error patterns in both languages using both native speaker transcription and acoustic analysis.
- To look for possible covert contrast in both languages, and describe patterns of covert contrast.
- To distinguish between language-specific and language-universal aspects in the course of first language acquisition for both languages.
- To offer possible accounts for the opposite error patterns of the two languages.


METHODS

[Participants and Task]

- 50 participants in all, including 5 adults for each language and 10 two-year olds and 10 three-year olds per language
- Word-repetition task
- For children: both pictures and audio prompts were providedFor adults: audio prompts only

RESULTS

[Adults]	En	glish	Japanese		
	p-value	r-square	p-value	r-square	
Cent	0.001	90.05%	0.001	78.97%	
MPP	0.001	89.59%	0.001	78.74%	
LSP	0.001	82.18%	0.001	61.58%	
Skew	0.001	55.23%	0.001	57.22%	
	0.001	59.31%	0.001	51.50%	
OnsetF2	0.001	72.76%	0.001	43.55%	

[Materials]

· Vowel:

· Words beginning with target

consonant- vowel sequences

-- /a/, /i/, /o/, /e/ and /u/

-- 3 word types for each

• Consonant: /s/ and /ʃ/

target CV

4000 5000 6000 7000 8000 9000 Centroid (1st Moment)

tongue position					
- /ʃ/ is rounded					
/s- ∫/ in Japanese					

• /s- ∬ in English

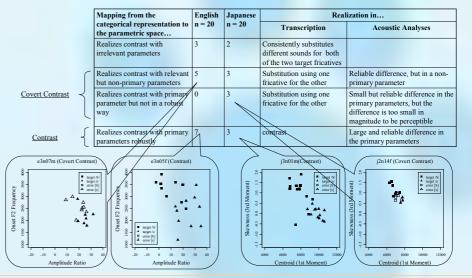
- contrast in

- contrast in tongue posture - are in complementary distribution before the two front

(in red: p < 0.05)

vowels

[Children]


	English	Cent	MPP	Skew	LSP	Amp	Onset	
	children					Ratio	F2	
Contrast	e2n10m	82.82%	82.77%	61.79%	67.67%	48.26%	65.78%	-
	e2n11f	91.73%	91.50%	85.39%	61.39%	9.04%	18.95%	
	e3n00f	77.14%	76.92%	59.28%	68.40%	41.60%	70.71%	
	e3n01m	69.27%	69.07%	26.34%	60.24%	74.28%	51.09%	
	e3n03f	87.54%	88.00%	58.59%	56.90%	27.75%	65.51%	
	e3n05f	84.89%	84.78%	60.64%	55.02%	54.93%	60.17%	
	e3n09m	52.95%	52.62%	39.41%	21.55%	32.16%	66.31%	
	e3n11f	82.82%	75.48%	26.40%	61.06%	37.72%	37.98%	
	e3n14f	91.73%	59.96%	29.72%	44.96%	63.78%	58.72%	
Covert	e2n00f	41.52%	41.79%	43.33%	16.74%	28.21%	54.25%	
Contrast	e2n01m	40.61%	40.73%	59.58%	87.81%	48.52%	69.62%	
	e2n02f	26.02%	26.77%	38.60%	24.27%	11.39%	5.41%	
	e2n03m	24.07%	23.84%	19.80%	31.02%	17.09%	16.04%	
	e3n07m	45.82%	44.56%	30.95%	63.26%	27.75%	37.83%	

	Japanese Children	Cent	MPP	Skew	LSP	Amp Ratio	Onset F2
Contrast	j3n01m	58.01%	73.82%	55.04%	38.21%	52.59%	66.60%
	j3n09m	83.55%	83.38%	56.87%	77.32%	43.87%	23.34%
	j3n12f	49.93%	49.62%	53.59%	38.67%	48.57%	29.35%
Covert Contrast	j3n05m	24.94%	25.77%	31.57%	22.17%	7.06%	67.95%
Contrast	j3n06f	32.57%	39.19%	35.34%	9.77%	45.27%	52.87%
	j2n14f	82.95%	77.64%	68.32%	20.86%	58.86%	76.47%
	j3n11f	31.98%	30.94%	6.81%	63.33%	12.96%	81.77%
	j3n13f	23.75%	25.29%	54.75%	57.17%	23.48%	64.08%

Centroid (1st Moment)

45.82% 44.56% 30.95% 63.26% 27.75% 37.83%

[Phonetic Development of 2-3 year olds of English and Japanese]

CONCLUSION & DISCUSSION

- For adults' productions, all six parameters clearly differentiate the two fricatives for both languages, but the English contrast is more robust than the Japanese one.
- For children's productions, the opposite error pattern [[s] for /ʃ/ in English and [[ʃ] for /s/ in Japanese) was confirmed by transcription analysis for both languages.
- The covert contrast patterns in native speaker transcriptions suggest that Cent and MPP are the primary acoustic parameters for discriminating the contrastive fricative pairs.
 Four levels of phonetic development were identified, as evidenced by results of both the transcription and acoustic analyses, with covert contrast being either the manifestation of incorrect mapping to non-primary parameters or less robust mapping to the primary parameters.
- Japanese-acquiring children develop the /s-f/ contrast relatively later than English-acquiring children. This may be due, at least in part, to the greater overlap of the two
 lingual sibilant fricatives in Japanese.

ACKNOWLEDGEMENTS

This work was supported by OSU cognitive science Summer fellowship 2006 to Fangfang Li, and by NIDCD grant (2932 to Jan Edwards. We thank the children who participated in the task, the parents who gave their consent, and the schools at which the data were collected. We also thank Laura Slocum and Kivako Ito who collected the data and did the native speaker transcriptions. We especially thank Mary E. Beckman and Eunjong Kong for their collaboration on this project.