

Code Switching to Standard American English: Categorization, Comprehension, and Executive Function

Jan Edwards, Megan Gross, Maryellen MacDonald, Megan C. Brown, and Mark S. Seidenberg University of Wisconsin-Madison, Madison, WI

ASHA 2010

INTRODUCTION

Background

- Nationally representative standardized assessments have shown a persistent achievement gap between African American and European American students (e.g., Lee et al., 2007; NCES 2009).
- Many African American students initially learn to speak African American English (AAE), a dialect of English that differs from the dialect of instruction, Standard American English (SAE).
- Both dialects of English are systematic and rule governed (e.g., Labov, 1966).
- There are morphosyntactic and phonological differences between AAE and SAE that may impact comprehension for young AAE-speaking children when they listen to SAE (e.g., Beyer & Kam, 2006, 2009; Johnson, 2005; de Villiers & Johnson, 2007).

Purpose of this study:

- To evaluate whether AAE-speaking young children can appropriately categorize AAE and SAE.
- To evaluate whether phonological and morphological differences between AAE and SAE impact comprehension of SAE in AAE-speaking children.
- To examine relationships among performance on these two experimental tasks and other individual differences, such as age, vocabulary size, and executive function.

Importance of this study:

- 33% of AAE-speaking children do not spontaneously learn to codeswitch by the end of 2nd grade.
- These children are at high risk for academic failure.
- The experimental tasks measure skills relevant to code-switching, so we are interested in what individual differences might predict performance on these tasks.

METHODS

Participant Characteristics: Means (SDs in parentheses)		
Number of boys, girls	44 boys, 44 girls	
Age in months	73 (16); range: 41-105	
Ethnicity	African American or biracial	
Socioeconomic status	76% low-SES (parent interview)	
Hearing Screening	All passed	
PPVT-4 standard score	94.6 (12.8)	
EVT-2 standard score	93.8 (10.2)	
TACL-3 (EPS) standard score	9.7 (2.1)	

Acknowledgements

Funded by the Wisconsin Institutes for Discovery (WID) and NIDCD. We thank Julie Washington for her input; Elisabeth Bownik and Alia Dayne for participant recruitment and data collection; Eunjong Kong and Daragh Sibley for assistance with data analysis; and Monique Mills and Doris Leeper for help on the comprehension experiments. Last, but certainly not least, we thank the children who participated in the study and their families.

Experimental Tasks

• A subset of the experimental tasks are described below.

Experiment 1: Dialect categorization

Stimuli:

• Visual: 6 red and 6 blue monsters

Figure 1. Example of monster stimuli.

- Auditory:
- Voices: 6 SAE-speaking and 6 AAE-speaking young women.
- All speakers read 2 children's books: A Snowy Day and A Letter to Amy.
- Auditory stimuli were edited into 1-2 sentence segments, paired with monsters (1 red and 1 blue per speaker) and animated to "speak" the story.

Procedure:

1. Training Phase:

- A red monster and a blue monster were presented on a touch screen: all red monsters spoke AAE and all blue monsters spoke SAE (or vice versa).
- The monsters both repeated a story segment, one at a time.
- Child's task after each monster spoke: "Touch the monster that just talked." Because the monsters were animated, it was clear which monster was talking.
- 3 AAE and 3 SAE voice/monster dyads were presented.

2. Practice Phase

Visual setup: Same as training (red monster and blue monster presented on screen)

No animation. Story segment presented in either SAE or AAE

Child's task after hearing story segment: "Touch the monster that talked."

Feedback

No feedback

Feedback
Same story as training
Same voice/monster/dyads as training
3 new, un

3 new, unfamiliar voice/monster dyads introduced (50% of trials)

New story

3. Test Phase

Experiment 2: Comprehension of SAE

Word-level experiment

Stimuli:

- Pictureable words that were familiar to children:
- Word pairs were potentially ambiguous in AAE because:
- Contained final consonant or consonant cluster (e.g., goal vs. gold).
- Contained singular/plural contrast (e.g., cat vs. cats)
- Auditory stimuli: Recordings by a young adult female speaker of SAE.
- Visual stimuli: Color photographs of objects

Procedure:

- 1. Familiarization: Children listened to the picture-names and repeated each one as they looked at the pictures.
- 2. Identification: Children were asked to touch the correct picture to match the word they heard. "Show me goal, please." "Show me cat, please."

Figure 2 Sample Trials

Distractor

† Target

Target

Distractor

Executive Function: Dimensional Change Card Sort (Zelazo, 1996)

Figure 3. Example of Zelazo's computerized DCCS Left: Pre-switch (color). Right: Post-switch (shape).

- 3 Phases
- 1. Pre-switch: Child sorts by one dimension (e.g., color)
- 2. Post-switch: Child sorts by other dimension (e.g., shape)
- 3. Mixed: Child sorts by shape on some trials and by color on others. switch trials (color \rightarrow shape); non-switch trials (color \rightarrow color)
- Accuracy and response times were recorded.
- Measures task-shifting and inhibition, which are aspects of executive function.
- Task-shifting and inhibition should also be relevant for learning how to codeswitch. (e.g., Bialystok & Viswanathan, 2009; Garbin et al., 2010)

Standardized Tests:

- Hearing screening
- Expressive and receptive vocabulary (EVT-2, Williams, 2007; PPVT-4, Dunn & Dunn, 2007)
- Sentence comprehension (EPS subtest of TACL-3, Carrow-Woolfolk, 1999).

RESULTS

Experiment	Dependent Variables	Mean (SD)
1: Dialect categorization	% correct	69 (20)

2: Word comprehension % correct on singular/plural

• Both experimental tasks were significantly correlated with age.

• r = .57 for dialect categorization; r = .43 for word comprehension.

Statistical Analyses

- We ran two mixed effects logistic regression models.
- Predictor variables for each model were chosen on the basis of which measures had the highest correlations with the dependent variables.

Model 1: Dialect Categorization

- Dependent variable: Percent correct on dialect categorization
- Predictor variables: Age, EVT raw score, TACL-EPS raw score, Overall accuracy on DCCS (executive function measure).

Figure 4. Model fits for all four independent variables separately (solid line) and combined (dashed line).

- Results for Model 1:
- The only significant predictor of categorization accuracy was EVT raw score, when the other variables were included in the model..
- Overall accuracy on the DCCS was not a significant predictor of categorization accuracy.

Model 2: Word Comprehension (singular/plural)

- Dependent variable: Percent correct on singular/plural comprehension.
- Predictor variables: Age, EVT raw score, TACL-EPS raw score, Mixed accuracy on DCCS (executive function measure).

Figure 5. Model fits for all four independent variables separately (solid line) and combined (dashed line).

• Results for Model 2:

74 (17) / 65 (15)

• Both EVT and overall accuracy on DCCS were significant predictors of word comprehension accuracy, even when other predictors were included.

DISCUSSION

Summary and Discussion

- The language skills of the children in this study seemed to be representative of those of children from low-SES families more generally.
 - For example, Washington & Craig (1999) reported a mean of 91 on the PPVT-III for a similar group of children.
- Expressive vocabulary size was a significant predictor of performance on both experimental tasks, suggesting that better language learners are more able to code-switch.
- The relationship between categorization accuracy and expressive vocabulary also suggests that socio-phonetic categorization is involved in word learning
- Executive function, as measured by mixed-accuracy on the DCCS, was a significant predictor of singular/plural comprehension, suggesting that task-shifting and inhibition are involved in code-switching.

Limitations and Future Directions

- Language samples to measure dialect density are not yet analyzed.
 - In a subset of data (N=8), a U-shaped relationship between dialect density and word comprehension was observed (Knox et al., 2010).

Figure 6. Word comprehension as a function of dialect density.

• Many of the younger children (n = 21) did not meet criterion on the switching portion of the DCCS, so another executive function task may be more appropriate for this age group.

• We have not yet analyzed reaction time data for the DCCS.