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Introduction

Auditory representations differ
IPeople who have different vocal tracts have different vocalizations.

IVocalizations of different talkers are represented differently even after applying
auditory models (e.g., Moore et al., 1997) to a spectrum.

Computation of equivalence classes of representations
IHumans are able to impose equivalence classes over these differing

representations, providing a basis for high-fidelity communication.

IThis ability is apparent very early in infancy, demonstrated by the nature of the
vocal exchanges between infants and their caretakers by four months of age
(Masataka, 2003; Fitch, 2004, 2010).

Equivalence classes are language-specific, and interactively constructed
IThe perceptual magnet effect (Kuhl, 1991; Guenther & Gjaja, 1996) suggests

that computation of equivalence classes is sensitive to the ambient language.

IThe influence of vocal imitation suggests that the equivalence classes are
constructed via social interaction (Kuhl & Meltzoff, 1996; Masataka, 2003).

Objects and Aims

IWe limit our inquiry to vowels, and take vowel normalization to be a cognitive
process which yields equivalence classes of auditory representations of vowels.

IWe briefly lay out a general approach to the theory of the acquisition of vowel
normalization during infancy, along with a computational modeling framework.

Aspects of the Theory

Infant’s construction of a model “self”
IAn infant constructs/refines an internal model (Wolpert, Ghahramani, & Jordan,

1995) over articulatory and auditory representations.

IConstruction of the self involves cross-modal abstraction over representations
yielded by the distinct modalities (Davenport, 1976; Kuhl & Meltzoff, 1982).

Infant’s construction of a model of “others” and alignment with the self
IHumans “trace patterns upon” their internal representations of the external

world (Lippmann, 1922; on James, p. 16), which includes “other” humans.

IRelating the patterns imposed on other conspecifics to those imposed on the
self enables “social learning” (as in Meltzoff’s (2007) “like-me” framework).

Infant’s organization of sensory information using cognitive manifolds
IA cognitive manifold describes what our brains might know about something

that is very complex and multi-dimensional by building a much
lower-dimensional “map” of it.

IFor example, a map of the world is a two-dimensional manifold built to describe
what we need to know to navigate the three-dimensional surface of our planet.

Key Theoretical Claims

I Infants construct cognitive manifolds – During the earliest stage of spoken
language acquisition, infants construct cognitive manifold representations over
their own vowel productions, and those of their caretakers.

IVowel normalization is manifold alignment – The computation of equivalence
classes of auditory representations of different talkers, including those of an
infant learner, is the alignment of cognitive manifolds constructed by the infant.

IVocal imitation guides alignment – The cognitive manifold alignment is guided
by vocal imitative exchanges between infants and caretakers, with the
perceptual magnet effect as a consequence of the exchanges.

System Architecture

Cognitive Manifolds

ICognitive manifolds are weighted graphs whose nodes encode sensory info.
IOrganizational aspects of the information is encoded in the weighted edges.
IMappings on manifolds can be learned using their graph Laplacians, which are

operators derived from edge weights.

Manifold Alignment: Perceptual Magnet Example

ILet EI and EA denote sets of infant and adult caretaker auditory representations
and denote imitation pairing as �im : EI ⇥ EA ! {0, 1}. In the depiction below,

�im = {hBE1,CR1i, hBE2,CR2i, hBE3,CR3i, hBE4,CR4i, hBE5,CR5i}.

IThe infant manifold M(EI) and adult manifold M(EA) are aligned (Ham et al.,
2005) by combining their graph Laplacians, using the pairs �im.

IThe alignment process yields mappings from M(EI) and M(EA) to a space of
abstract representations of those in EI and EA such that the abstract
representations of the points in each pair in �im are close to each other.

Expansion to Cross-modal Modeling

ILet AI denote the set of infant articulatory representations corresponding to the
infant auditory representations in EI, and M(AI) an articulatory manifold.

IDenote cross-model pairing as �cm : EI ⇥ AI ! {0, 1}, and let

�cm = {hBE1,AR1i, hBE2,AR2i, hBE3,AR3i, hBE4,AR4i, hBE5,AR5i}.

IThe infant constructs a model self by aligning M(EI) and M(AI), using the pairs
�cm, mapping points in EI and AI to an abstract cross-modal space CI.

IThe infant constructs a model of the adult caretaker by aligning M(EA) and
M(AI), using the pairs �cm, mapping points in EA and AI to an abstract
cross-modal space CA.

ILet CI(eI) denote the abstract representation of eI 2 EI, and CA(eA) that of
eA 2 EA. Finally, M(CI) and M(CA) are aligned using the pairs

�abs = {hCI(BEi),CA(CRi)i | i = 1, . . . , 5}.
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Data and Figures

Articulatory and Acoustic Data

I
We use Maeda’s and Boe’s (1997) Variable

Linear Articulatory Model (VLAM) to model the

vowel productions of an infant and an adult

caretaker.

I
We use the 6 month-old setting of the VLAM as

our model infant, and the 10 year-old setting for

the adult caretaker (as it was perceived to be

most similar to a young female adult in a

cross-language perception study (Munson et al.,

2010)).

Representations

I
The articulatory representations (1, left) are principal

component vector arguments for the VLAM, each yielding a

vowel signal with a formant representation (1, middle).
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I
The auditory representations (1, right) are “excitation

patterns” derived from the vowel signals using the

transformations described in Moore et al. (1997)

Perceptual Magnet Effect

I
The perceptual magnet effect

(Kuhl, 1991) names the

phenomenon wherein the

perception of a vowel in a given

language is influenced by

“perceptual magnets” located in

a perceptual metric space over

representations of vowels in

that language.

Adult Perception of Infant Vocalizations, and Contingent Responses

I
We use 38 perceptually categorized vowel stimuli

(Munson et al. 2010) generated by the VLAM set at 10

years of age to model the vowel categories of an

“average” Greek-speaking caretaker.

I
We additively interpolate the categorizations over the

formant space of the caretaker and “project” the

categories to the infant’s acoustic space, modeling the

caretaker’s interpretations of infant vocalizations.

Simulation Results

I
In response to an infant’s vocalization, the caretaker

interprets and responds, yielding vocal imitation pairs

(left) that guide manifold alignment.

I
Cross-modal manifold alignment yields a basis for

vowel categorization (middle), while the intra-modal

alignment (right) yields perceptual warping.
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