The (Null) Effect of Spectral Estimator on Estimates of Spectral Moments Patrick Reidy The Ohio State University, Dept. of Linguistics

Purpose of Study

- The spectrum of a sibilant fricative is "noisy" and difficult to estimate accurately (Shadle, 2006)
- To improve the estimation of sibilant fricatives' spectra, recent work has argued for the adoption of "reduced-variance estimators" (e.9., Blacklock, 2004).
- However, spectral estimation is not the endpoint of a linguisic analysis, as the spectra estimate is almost always reduced to a small number of measures that describe its shape properties, such as spectral moments (e.g., Jongman, Wayland \& Wong, 2000).
- Previous work has found no significant effect of spectral estimator on estimates of peak and centroid frequency for adult productions of English /s/and /S/ (Reidy \& Beckman, 2012).
- Current study: Investigates the effect of spectral estimator on estimates of the first four spectral moments from adults' and children's productions of English sibilants.

Background

- Two commonly used spectral estimators are the discrete Fourier transform (DFT) and the multitaper spectrum (MTS)
- The MTS is equal to the pointwise average of K DFTs computed from data that have been windowed by discrete prolate spheroidal sequences (Thomson, 1982).
40 ms window of s s

Apply DFT to compute
eigenspectrum

Average eigenspectra
pointwise to compute
MTS

Variance properties of MTS \& DFT

- Each ordinate of the MTS has $1 / K^{\text {th }}$ the variance of the corresponding ordinate of
the DFT (Perviva and Walden, 1993) - Hence, at each frequency, the magnitude of the spectrum is estimated more accurately with the MTS than with the DFT.

Experiment

Participants
Age group No participants (mas) No /s/tokens (males) No. $/ \mathrm{j} /$ tokes (mas) Adults Adults 5-year-olds 4 -year-olds
3 -year-olds 2-year-ol

Elicitation

- Recorded at 44.1 kHz . - Frication onset and offset marked by hand - Phonemically transcribed excluded ifincorrect.

- DFT \& MTS estimated from central 40 -ms. - Centroid, variance, Skewness \& kurtosis
computed within the computed within the
$.32-15 \mathrm{kHz}$ band.

Results and Analysis

Paired t-tests revealed an effect of estimator on the even, but not the odd moments.

Moment	$t(2060)$	μ (MTS - DFT)	p-value	t: when tested
Centroid	-1.772	-7.241	0.076	
Variance	5.599	6.301×10^{4}	2.443×10^{-8}	
Skewness	-1.597	-0.006	0.110	

Magnitude of estimator effect is dwarfed by place-of-articulation effect for all moments.

- Place effect:
- $|\mu(/ s /)-\mu(/ / 5)|$,
$\mu(/ \mathrm{s} /)-\mu(\mathrm{JJ})$
for MTS \& DFT.
- Estimator effect:
- Estimator effect:
$\mu(\mid$ MTS - DFT $)$.
$\mu(\mid$ MTS - DFT $)$),
averaged across all
tokens.

Moment	MTS place effect	DFT place effect	Estimator effec
Centroid	3.304×10^{3}	3.311×10^{3}	1.226×10^{2}
Variance	2.027×10^{6}	1.967×10^{6}	3.127×10^{5}
Skewness	1.175	1.178	0.130
Kurtosis	1.221	1.167	0.499

- Choice of spectral estimator does not seem to affect the ability to distinguish $/ \mathrm{s} /$ from $/ \mathrm{s} /$ in terms of any of the spectral moments
-MTS and DFT give comparable estimates of the place effect for all moments.
- For most moments, the estimator effect is an order of magnitude smaller than either place
effect.

Results and Analysis

Comparison of estimator and place effects on centroid and skewness, by age group - Across studies, centroid and skewness are the moments that most consistently differentiate $/ \mathrm{s}$ / from /S/ (see Koenig, Shade, Preston \& Mooshammer, 2013.

- Two-year-olds produce $/ \mathrm{s} /$ and $/ \mathrm{s} /$ relatively close together in terms of centroid and skewness; however, even for this group, the estimator effect is a fraction of the place effect.

Gender effects, when present, also dwarf the effect of spectral estimator.

Acknowledgements

- Data collection was supported by NIDCD grant R01 02932 to Jan Edwards (learningtotalk. org) - This work was supported by funding from the OSU Center for Cognitive Science
- Special thanks are due to Mary Beckman, whose advice greatly improved this material, and to the Special thanks are due to Mary Beckman, whose advice greatly improved this material, and to the - Phonies discussion group at OSU.

