

Relationships among non-mainstream American English, vocabulary size, and lexical processing in preschool-aged children Ruby-Louise Braxton & Jan Edwards, University of Wisconsin-Madison

BACKGROUND

Rationale

- Children who speak Nonmainstream American English (NMAE) are at risk of being misdiagnosed with a speech and/or language disorder at higher rates. • Many studies have examined the use of NMAE, but have found conflicting results
- regarding how dialect use can influence later academic success.
- Some of these conflicting results may be because NMAE means different things in preschool-age and school-age children.
 - Preschool-age children: High dialect use = Good learner of native dialect.
 - School-age children: High dialect use = Poor dialect shifter.

Purpose of this study

- To investigate the relationship among dialect density, expressive vocabulary, and lexical processing speed in preschool-age children who speak African American English (AAE).
 - An eye-tracking task based on the looking while listening (LWL) paradigm (Fernald et al. 2008) was used to examine lexical processing efficiency in this group of children.

Research Questions

- . What is the relationship among dialect density, vocabulary size, lexical processing efficiency, and age?
- 2. Can measures of dialect density be differentiated from measures of language development in preschool children?

METHODS

Participants

- 32 African American preschoolers (14 boys, 18 girls) from Madison, Wisconsin.
- Aged 2;4 5;11
- Typically developing per parental report; none receiving special education services at the time of testing.
- Each child passed a bilateral hearing screening.
- Table 1. Demographic information for participants.

Age	Maternal Education ¹	Total Family Income	EVT-2 Standard Scor	
46.09 (10.58)	2.84 (1.25)	1.214 (0.5)	93 (10)	
Range: 28-69	Range: 1-4	Range: 1-3	Range: 67-119	
<u>6-step scale for education</u> : 1 = less than high school degree 2 = GED 3 = high school degree 4 = some college 5 = college degree 6 = post-graduate degree		gree $5-ste 1 = be 2 = $ 3 = $ 4 = $$	<u>5-step scale for family</u> 1 = below \$20,000/year 2 = \$20,000 to \$40,000/ 3 = \$41,000 to \$60,000/ 4 = \$61,000 to \$100,000 5 = above \$100,000/year	

Stimuli for LWL task

Words

- Stimulus words chosen based on age of acquisition and pictureability.
- All target words paired with semantic, phonological, and unrelated foils.
- Target words and all phrases (*find the, see the, isn't this fun*, etc.) recorded in African American English (AAE)
- Stimuli presented to children in their native dialect of AAE Pictures

•Color photographs of target objects.

•Pictures were normed for comprehension in a Head Start classroom. •Pictures used only if recognized by 80% of children.

PROCEDURE AND ANALYSIS

Eye Tracking Procedure and Analysis

- Target, Semantic Foil, Phonological Foil, and Unrelated Foil.
- Identified four area of interest (AOI's) and coded looks to target and phonological,
- semantic, and unrelated foils.
- Time range analyzed = 250 ms to 1750 ms (1500 ms total).
- Accuracy: looking duration to the target relative to the total duration of interest (1500
- ms).

Language Sampling Procedure and Analysis

speaking AAE during free play context.

Semantic Foil

Figure 1. Sample of a stimulus

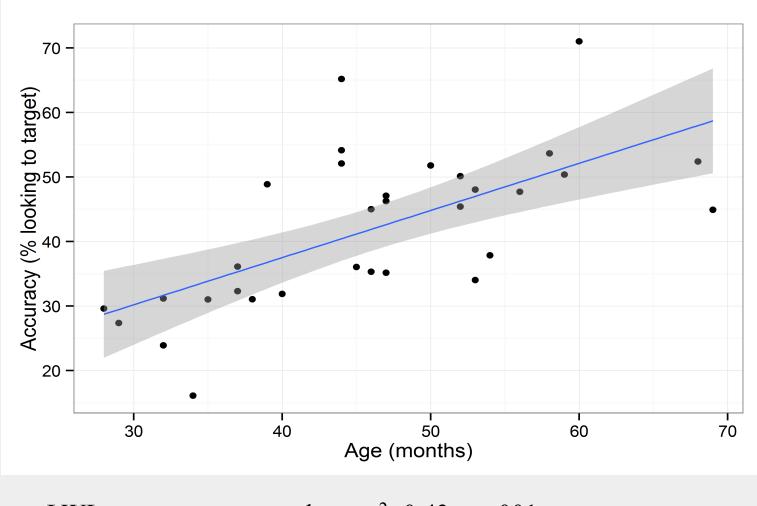
fly(target); bee (semantic foil); flag

(phonological foil); pen (unrelated)

presentation. Four images are presented:

- Last 50 utterances transcribed orthographically and analyzed for total number of words, morphosyntactic and phonological AAE features.
- Morphosyntactic density, phonological dialect density, and overall dialect density calculated (number of dialect features/total number of words).

Statistical Analysis

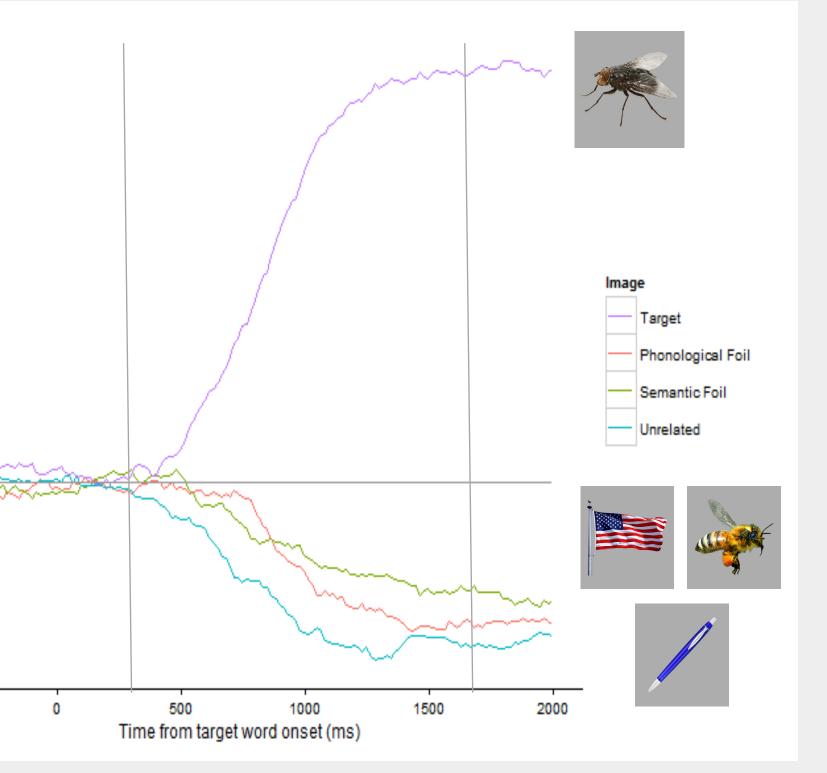

<u>Regression analyses used to examine relationship among dialect density, vocabulary</u> size, and lexical processing efficiency:

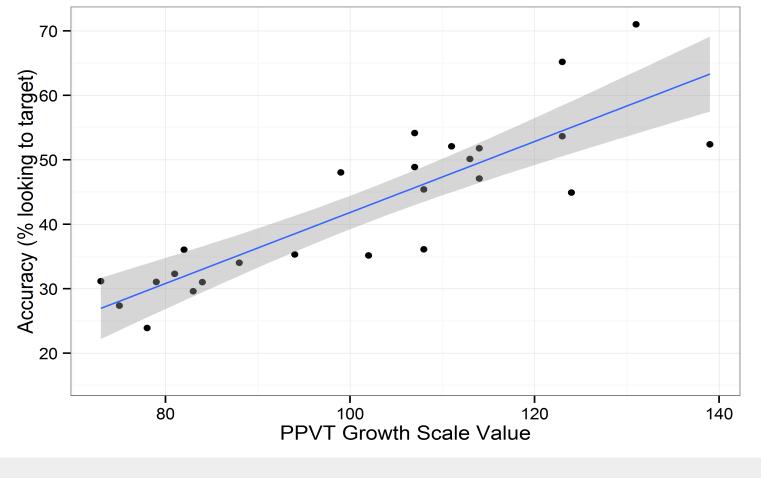
- Independent variables: age, dialect density


EYE TRACKING RESULTS

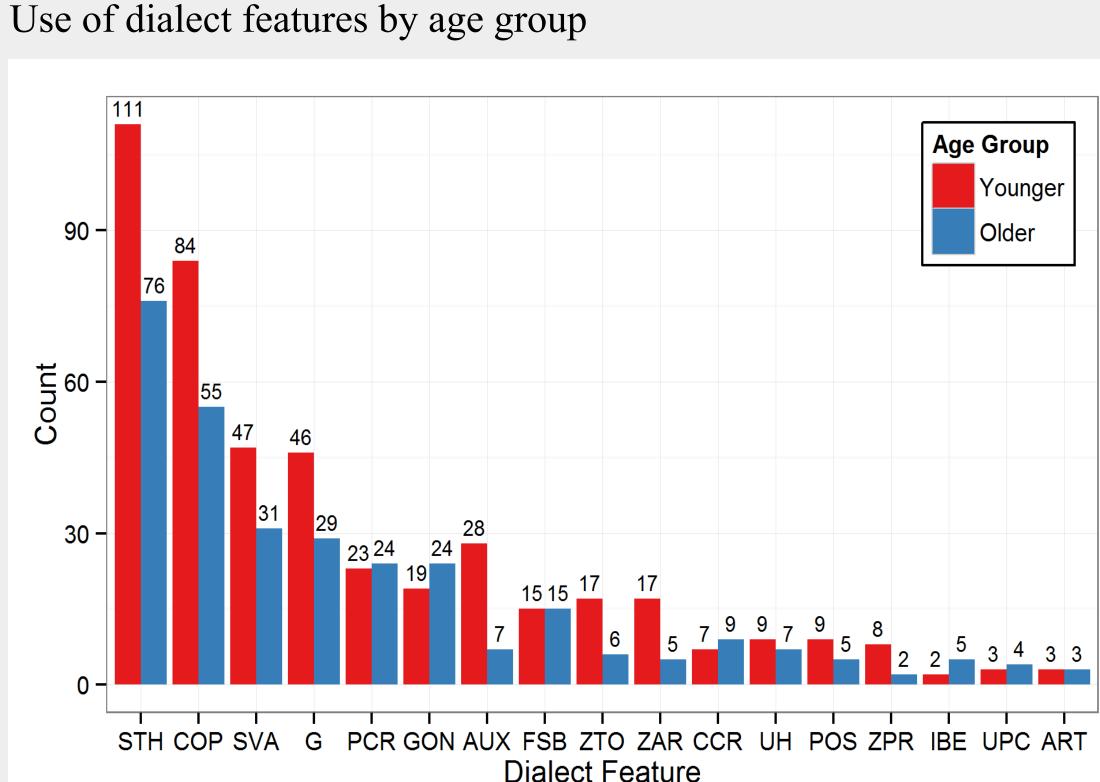
- Average (across all trials and subjects) looks to target over time for the target pictures the three foils.
- Baseline (before word onset at 0 ms), looks for all four image-types were about 25%. No one image was more interesting than the others.
- Around 250 ms, children began looking at the target word
- As time goes on, overall, children spent more time looking to the target word rather than the foils.

Relationship among LWL accuracy, age, and dialect density


• LWL mean accuracy and age: $r^2=0.43$, p<.001Dialect density was not a significant predictor of LWL accuracy


Collected during adult-child discourse with an African American female examiner

• Dependent variables: LWL mean accuracy or receptive/expressive vocabulary size


Average looks to target word and three foils over time

Relationship among vocabulary, dialect density, and LWL accuracy

• Receptive vocabulary size and LWL accuracy: $r^2=0.75$, p < .001• Dialect density was not a significant predictor of receptive vocabulary size.

Median split by age:

Feature use differences between age groups

Dialect features	Younger (>46 months) (n = 17)	Older (<47 months) (n = 15)	% change in use as age increases
ART	3	3	0% change
COP	84	55	35% decrease
FSB	15	15	0% change
IBE	2	5	60% increase
SVA	47	31	34% decrease
UPC	3	4	25% increase
CCR	7	9	22% increase
G	46	29	37% decrease
PCR	23	24	4% increase
STH	111	76	32% decrease
GON	19	24	21% increase
UH	9	7	22% decrease

- Limitations of study:
- expressive syntax.
- use.
- was related to dialect density.
- any variables of interest.
- - accurately.
 - language acquisition and general learning.
- Future Directions:

This research was supported by NIDCD Grant R01-02932 to Jan Edwards, Mary E. Beckman, and Ben Munson and by NICHD Grant P30-HD03352 to the Waisman Center.

DIALECT DENSITY RESULTS

• 17 participants in the younger group (age > 46 months) • 15 participants in the older group (age < 47 months)

Mean dialect density

Type of dialect density	Mean	SD
Morphosyntactic	0.07	0.044
Phonological	0.06	0.043
Non-age sensitive	0.12	0.07
Overall	0.13	0.07

Relationship between DD and age

- Significant negative correlation between age and overall dialect density; age and morphological dialect density, and age and "nonage sensitive" measure of dialect density.
- No significant correlation between age and phonological dialect density.
- Features that decreased by less than 40%, increased, or stayed the same were used to calculate a revised **non-age sensitive measure** of dialect density.
- Features with a decrease of more than 40% between younger and older group were assumed to be due to language development.

DISCUSSION

Conclusions/Clinical Implications:

• Language samples were short (only 50 utterances).

• Receptive and expressive vocabulary evaluated, but no measures of receptive or

• Can we even measure dialect density in preschool-aged children?

• At this age, it is difficult to differentiate between language development and dialect

Vocabulary size and lexical processing efficiency were related to each other, but neither

• Once age was taken into account, dialect density was *not* a significant predictor for

• Although most of the children in this study would not be considered language impaired, many children scored below average on vocabulary when compared to their peers. • As vocabulary size increased, children processed even highly familiar words more

• Processing familiar words less accurately puts these children at a disadvantage for

• Therapy should focus on improving vocabulary, rather than modifying the use of dialectal features, which will help to improve lexical processing efficiency overall.

• Calculate MLU % obligatory use of morphological dialect features.

ACKNOWLEDGEMENTS