The differential development of vowel context effects on sibilant fricatives

Patrick F. Reidy
Waisman Center, Dept. of Communication Sciences \& Disorders, Univ. of Wisconsin—Madison
\checkmark When measured at a discrete point near the fricative-vowel boundar, the magnitude of anticipatory vowel-context effects on the spectra properties of English /s/ and / $\mathrm{J} /$ have been found to be greater children's than in adults' productions (Nittrouer etal, 1989, 1996).
\triangleright Greater vowel-context effects on sibilants have been argued to indicate that children's productions are more syllabic, as opposed to segmental, than are those of adults.
The spectral properties of adults' productions of $/ \mathrm{s} /$ and $/ \mathrm{S} /$ vary and height of a following vowel (skarous et al. 2011: Reidy \& Beckmand. 2015) But vowel-context effects on the spectral dynamics of sibilants have not been investigated in children's productions.

- Hypothesis: If children's sibilant-vowel productions are more syllabic than segmental, then the magnitude of anticipatory effects of vowel rounding and height on both the static and dynamic spectral properties of the fricative will decrease with age.

Background

Figure 1: Discretization of phonetic feature continua of English vowel categories.

/i/	/e/	/a/	/u/	/0/
Unro			Rounded	
/i/	/u/	/e/	/0/	/a/
High				-high

Figure 2: Effects of vowel rounding (left column) and height (right column) on the peak $E R B_{N}$ number (top row) and excitation drop trjectories (middle and botto rows) of adults' productions of English sibiliant fricatives.

Methods
>81 typically developing, native English-acquiring children between 2 and 5 years old.
$\triangleright 30$ real words with $/ \mathrm{s} /$ or $/ \mathrm{s} /$ in initial position, followed by a vowel. - Vowels were grouped into five classes:

Three $1,1 / ;\{\mathrm{u}\}: / \mathrm{u}, \mathrm{u} / ;\{\mathrm{e}\}: / \mathrm{e}, \varepsilon / ;\{0\}: / \mathrm{o} / ;\{\mathrm{a}\}: / \wedge \mathrm{a}, \mathrm{o}$
Thrget words per combination of sibilant and vowel class. \triangleright Elicited with a picture-prompted word-repetition task.
Estimation of psychoacoustic spectral properties
$>$ From each sibilant production, 17 excitation patterns were computed from 20 -ms intervals spaced evenly across the frication (cf. Fig. 3) Psychoacoustic properies computed from each excitation pattern. - Peak $E R B_{N}$-number: most prominent psychoacoustic frequency, - Excitation drop: difference in excitation (dB) between high-freq peak and low-freq. trough (cutof $=24.5 \mathrm{ERB}_{\mathrm{N}}-\mathrm{num} . \approx 3 \mathrm{KHz}$).

Figure 3 : Top: Waveform of $/ \mathrm{s} /$; odd-numbered 20 -ms analysis windows overlaid. Middle: Multitaper spectrum estimated from middle window of $/ s /$; gammatone
filters overlaid. Bottom: Excitation patterm output by a 361 -channel gammatone filters overlaid. Bottom: Excitation pattern output by a 361 - fiter bank model of auditory periphery.

Quantifying the development of vowel-context effects
\triangleright Effects of vowel rounding and vowel height investigated independently. \triangleright Cubic-time orthogonal polynomial growth-curve models.

- Random effects of vowel feature-within-participant.
\triangle Effect of vowel feature for a participant computed by subtracting the two values of their vowel-within-participant random effects.
\triangleright Development of vowel-context effects assessed with Kendall's rank correlation coefficient (τ).

Discussion

The hypothesis was not supported
-Effects of rounding and height on the intercept (i.e., the level) of the peak $E R B_{N}$ number and excitation drop trajectories tended to be weakly negatively correlated with age, suggesting that these effects decrease in magnitude as children develop.

- Vowel-context effects on the non-zero powers of time (i.e. the shape) of the trajectories tended to be positively correlated with age, suggesting that these effects increase in magnitude as children develo
Asymmetry between effects on trajectory intercept, which decreased in magnitude, and those on
 coarticulation, but the latter from temporal coordination.

Acknowledgements

Data collection was supported by NiH Grant No. R01DC02932 to Jan Edwards (UWWadison) and Mary E. Beckman (Ohio State). Data analysis was partially supported by a Stetson Scholarship from the ASA to the author.

References

 Segmentst Evence trom the Spectral Sturucture or.
and Adults, J Jpeeech L Lang Hear $R, 32(1)$, $120-132$.
 Their Speech Gestrunt
$39(2), 379-389$

