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Abstract
Both perceptual and acoustic studies of children’s speech inde-
pendently suggest that phonological contrasts are continuously
refined during acquisition. This paper considers two traditional
acoustic features for the ‘s’-vs.-‘sh’ contrast (centroid and peak
frequencies) and a novel feature learned from data, evaluating
these features relative to perceptual ratings of children’s pro-
ductions.

Productions of sibilant fricatives were elicited from 16
adults and 69 preschool children. A second group of adults
rated the children’s productions on a visual analog scale (VAS).
Each production was rated by multiple listeners; mean VAS
score for each production was used as its perceptual goodness
rating. For each production from the repetition task, a psychoa-
coustic spectrum was estimated by passing it through a filter
bank that modeled the auditory periphery. From these spec-
tra centroid and peak frequencies were computed, two tradi-
tional features for a sibilant fricative’s place of articulation. A
novel acoustic measure was derived by inputting the spectra to
a graph-based dimensionality-reduction algorithm.

Simple regression analyses indicated that a greater amount
of variance in the VAS scores was explained by the novel fea-
ture (adjusted R2 = 0.569) than by either centroid (adjusted
R2 = 0.468) or peak frequency (adjusted R2 = 0.254).
Index Terms: phonological acquisition, sibilant fricatives,
Laplacian eigenmaps

1. Introduction
A large body of research suggests that phonological develop-
ment is an extended and gradual process. A consistent find-
ing in support of this characterization is that younger children’s
productions are both less accurate and more variable (less con-
sistent) than older children’s productions. Accuracy and vari-
ability have been measured in multiple ways. For example, ac-
curacy traditionally is assessed using phonetic transcription by
trained observers; these transcriptions can then be used to as-
sess variability, by counting the number of different symbols
that are used to transcribe multiple productions of the same tar-
get sound (e.g., [1], [2], [3]). Accuracy can also be measured
in a more granular token-by-token basis by presenting multiple
listeners with a word (or an excised syllable, etc.) containing
a target sound and asking them to say whether the target sound
was produced correctly or to rate the goodness of the production
on a continuous scale (e.g., [4], [5]). For pairs of sounds in con-
trast, accuracy and variability can be measured using a continu-
ous visual analog scale (VAS) between endpoints identified with
the most accurate renditions of the two contrasting sounds (e.g.,

[6], [7]). Finally, accuracy and variability of sounds in contrast
can also be assessed by measuring known acoustic features that
distinguish the sounds. For example, many researchers have
measured voice onset time to assess the accuracy of young chil-
dren’s productions of voiced versus voiceless stops (e.g., [8],
[9], [10], [11], [12]), or have measured centroid frequency to
assess young children’s productions of sibilant fricatives (e.g.,
[13], [14]).

There is also some research relating these different ways
of assessing accuracy and variability. For example, Munson
and Urberg Carlson used the centroid frequency in English-
acquiring children’s productions of /s/ and /S/ to compare and
evaluate different methods for eliciting more granular percep-
tual ratings of accuracy of these sibilant fricative productions
[15]. Li and colleagues used a more granular measure of accu-
racy (proportion of listeners who deemed the production to be a
correct /s/ or a correct /S/ in two different trials) to explore dif-
ferences in the acoustic cues for the sibilant fricative contrast in
English versus Japanese [4].

In this paper, we extend the line of research that has de-
ployed acoustic features as an instrument for characterizing
phonological development in children; however, we consider
the selection of acoustic features as a process of dimensional-
ity reduction, by which a high-dimensional representation (e.g.,
a spectrum) is mapped onto a low-dimensional representation
(e.g., a small set of statistics computed from a spectrum). From
this perspective, traditional acoustic features such as centroid
frequency are determined by the researcher a priori with little or
no consideration of the distribution or structure of the observed
high-dimensional data. We propose a data-driven approach for
learning acoustic features for the /s/-vs.-/S/ contrast, based on
a graph-theoretic algorithm (Laplacian eigenmaps; [16], [17]).
We then evaluate the learned acoustic feature and two traditional
features relative to perceptual ratings of preschool children’s
productions of /s/ and /S/.

2. Method
2.1. Speech production task

The production data are part of a larger longitudinal study
on relationships among speech production, speech perception,
vocabulary growth, and phonological awareness. At each of
three test waves, word productions were elicited in a picture-
prompted word-repetition task [18]. Lists of age-appropriate
target words were designed to elicit multiple tokens of /s, S, t, k/
and two or three other consonants (as appropriate for the age)
in word-initial position in a variety of vowel contexts. The lists
for the older two test waves were also used to elicit words from
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adults, to evaluate pronunciation norms for the local dialect re-
gion. For the current study, word-initial voiceless sibilants /s/
and /S/ were extracted from recordings of 69 of the children at
the first test wave (63 female, 36 male) and 16 of the adults
(10 female, 6 male). All were monolingual native speakers
of American English recruited from two cities in the Northern
Midwestern region of the U.S. The children ranged in age be-
tween 28 and 39 months (mean 32.9 months). The adults ranged
in age between 20 and 22 years (mean 20.6 years).

The task was administered in a sound booth or a quiet room
in one session (for children at any test wave) or in two sessions
(for two stimulus lists for the adults). Each session was recorded
using a high-quality boom microphone and stored digitally at
44.1 kHz. Each recording was annotated by a team of research
assistants in two stages using customized Praat [19] scripts. At
the first-stage, an annotator listened to an entire recorded ses-
sion, marking off intervals corresponding to the subject’s re-
sponses to the succession of stimuli and marking each interval
either as an on-task production of the target word or as an off-
task response (such as comment on the picture or a refusal to
respond). At the second stage, an annotator listened to each
on-task production for trials where the stimulus was an /s/- or
/S/-initial word, and identified the production of the initial con-
sonant as a sibilant or as some other sound. If she identified the
production as a sibilant, she also then marked off the boundaries
for the frication noise and identified the place of articulation,
choosing from five transcription categories: (1) “[s]” (i.e., a
clear, unambiguous [s]), (2) “[s]:[S]” (i.e., intermediate between
the two sibilants but closer to [s]), (3) “[S]:[s]” (intermediate but
closer to [S]), (4) “[S]” (i.e., a clear [S]), and (5) “other” (i.e., not
on the [s]-to-[S] continuum). The adult participants produced a
total of 511 /s/ targets and 480 /S/ targets as sibilant fricatives (1
item was mispronounced). The children produced a total of 896
(out of 1104) /s/ targets and 874 (out of 1104) /S/ targets as sibi-
lant fricatives that were transcribed with a place of articulation
along the [s]-to[S] continuum.

2.2. Perceptual rating task

The 1770 sibilant fricative productions by the children were
used as the basis for stimuli in a perceptual rating task, in which
adult listeners rated the /s/- or /S/-likeness of each production.
Productions were screened to ensure that they were free of back-
ground noise, leaving 1522 productions. From the recording of
each whole-word production, the initial CV sequence was ex-
tracted, beginning 5 ms prior to the onset of sibilant frication
and ending 150 ms after the onset of voicing for the vowel.
(Presenting only the initial CV was intended to minimize the
possibility that listeners would use lexical expectations when
rating the fricative.)

Stimuli were then grouped into 4 disjoint sets of between
400 and 500 items, for experimental sessions that could be com-
pleted in less than 30 minutes, as in [15]. Seventy listeners were
each administered one of the stimuli sets. All listeners were na-
tive, monolingual speakers of English between the ages of 18
and 50 years, who reported no current or previous speech, lan-
guage, or hearing disorder.

On each trial, the listener saw a double-headed arrow an-
chored by the text “the ‘s’ sound” at one end and “the ‘sh’
sound” at the other. The stimulus was played once, and the
listener was asked to rate where the initial consonant fell on this
visual analog scale (VAS) from an ideal /s/ to an ideal /S/ by
clicking at an appropriate location along the arrow. The click
location in pixels was logged automatically.
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Figure 1: Examples of psychoacoustic spectra computed from
the word-initial fricatives from an adult female’s productions of
‘sister’ (black) and ‘shoes’ (gray). The centroid and peak fre-
quencies of each spectrum are indicated by dotted and dashed
vertical lines, respectively. The light gray vertical segments in-
dicate the divergence between the two spectra.

Listeners were given no explicit instructions on what crite-
ria they should use to judge the fricative. They were encouraged
to use their ‘gut instinct.’ Each experiment took approximately
30 minutes to complete. A total of 37,002 ratings were elicited,
across all listeners. Each stimulus item was presented to and
rated by at least 10 listeners.

2.3. Acoustic analyses

Acoustic analyses were performed on all the children’s produc-
tions that were used as stimuli in the VAS experiment and all
the adults’ productions. For each sibilant fricative production,
the middle 50% of frication was extracted with a rectangular
window, and then an eighth-order multitaper spectrum [20] was
computed (time-bandwidth parameter nW = 4). A psychoa-
coustic spectrum was then computed by passing the multita-
per spectrum through a bank of 361 gammatone filters (see also
[21], [22]). The filters’ center frequencies were spaced evenly
between 3.0 and 39.0 along the ERB number scale, which mod-
els the auditory periphery’s logarithmic frequency compression
[23], [24]. The bandwidth of each filter was proportional to its
center frequency, which models the auditory periphery’s differ-
ential frequency resolution [25],[26]. The output of each chan-
nel in the filter bank was summed and associated to that filter’s
center frequency, representing the pattern of excitation induced
in auditory filters (see Figure 1).

From each psychoacoustic spectrum, two traditional acous-
tic features for the /s/-vs./S/ contrast were computed: centroid
and peak frequency. Given a psychoacoustic spectrum x whose
value at frequency f is denoted by xf ,

centroid(x) =
∑
f

xf · f∑
f xf

(1)

and
peak(x) = argmax

f
xf . (2)

Both of these features index the central location of the energy
distribution across the frequency scale. Several studies have re-
ported that /s/ has greater centroid and peak frequency values
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than /S/ (e.g., [27]). This spectral difference is due to an articu-
latory difference: for /s/, place of articulation is relatively more
anterior, consequently the volume of the oral cavity anterior to
the constriction is relatively smaller.

A novel acoustic feature was derived by inputting the psy-
choacoustic spectra to a graph-based dimensionality-reduction
algorithm (Laplacian eigenmaps; [16], [17]). The high-level
description of this approach is that both the similarities be-
tween tokens in each talker’s production space and the corre-
spondences between different talkers’ production spaces, are
represented in a weighted graph, which is then projected into
a low-dimensional space wherein the productions can be di-
rectly compared. More concretely, the vertices in the weighted
graph represented the psychoacoustic spectra. Vertices i and j
were adjacent (i.e., connected by an edge) only if (a) the cor-
responding excitation patterns xi and xj were produced by the
same talker, or (b) xi and xj were productions of the same tar-
get word, and xi or xj was produced by an adult. The weight
w(i, j) on the edge connecting adjacent vertices i and j was

w(i, j) = e−(DKL(xi‖xj)+DKL(xj‖xi)), (3)

where DKL(x
i‖xj) is the Kullback-Leibler divergence from

(normalized) psychoacoustic spectrum xj to xi

DKL(x
i‖xj) =

∑
f

xif log
xif

xjf
. (4)

The weighted graph thus had the following properties: for
a given talker, all productions were connected to each other; be-
tween any two adults, productions of the same target word were
connected; between a child and an adult, productions of the
same target word were connected; between any two children,
no productions were connected. This particular graph structure
is motivated by the facts that it represents the organization of
each intra-speaker production-space and that it puts each child’s
production-space in correspondence with the community-norm
set by the adults’ production-spaces.

The graph was represented as an adjacency matrix A, such
that its value on row i and column j is Ai,j = w(i, j) (see
equation (3)) if vertices i and j are adjacent in the graph, and
0 otherwise. The embedding into a low-dimensional space was
found by solving the generalized eigenvalue problem

Lγ = λDγ, (5)

whereD is the diagonal matrix whose entries denote the degree
of each vertex Di,i =

∑
j Ai,j ; and L is the Laplacian matrix

L = D − A. A one-dimensional representation for the adults’
and children’s productions is given by the eigenvector γ1 that
corresponds to the least non-zero eigenvalue λ1.

3. Results
3.1. VAS ratings

Each VAS rating in pixels was range-normalized to the inter-
val [0, 1], where 0 indicates a rating closest to the text “the
‘s’ sound” and 1 indicates a rating closest to “the ‘sh’ sound.”
These range-normalized ratings were transformed under the
empirical logit function (with adjustment 0.001) and then en-
tered as the dependent variable in two sets of mixed-effects
regression models, to determine whether ratings differed as a
function of the transcription category and of target consonant,
as suggested by the distribution of mean ratings shown in Fig-
ure 2. One set of models compared the ratings for stimuli that
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Figure 2: Distribution of mean range-normalized VAS ratings,
separated by transcription and target category. Each of the 8
large dots shows the mean value for the group of means on
which it is overlaid, and each number to the right shows the
number of stimuli in that group.

Table 1: Summary of significant fixed effects in the final model
for the two sets of mixed-effects regression models.

Transcribed as [s] or [s]:[S] Transcribed as [S] or [S]:[s]

Coeff. β̂ t Coeff. β̂ t

[s], /s/ −1.08 −14.6 [S], /S/ 1.04 9.6
[s]:[S] 0.63 17.3 [S]:[s] −0.48 −13.5
target /S/ 0.24 9.4 target /s/ – –
[s]:[S], /S/ −0.23 −4.6 [S]:[s], /s/ 0.23 2.8

were transcribed as some kind of [s] (left half of Table 1), cor-
responding to the data plotted in the top half of the figure. The
other set compared the ratings for stimuli that were transcribed
as some kind of [S] (right half of Table 1), corresponding to the
data plotted in the bottom half of the figure.

Adopting the step-up procedures suggested by [28], each
series began with a base model that had no fixed effects and only
random intercepts for talker (i.e., the subject who produced the
stimulus) and for listener (the subject in the perception experi-
ment that provided that rating). Fixed effects were then added
one at a time and evaluated using the likelihood ratio test. Ta-
ble 1 shows the estimated coefficients and t-values from the two
final models for those effects that were shown to be significant
improvements over the next simpler model.

In both series of models, there was a significant main effect
of transcription category, indicating that ratings for tokens that
were transcribed as “clearly [s]” (or as “clearly [S]”) were closer
to 0 (or closer to 1) than ratings for tokens that were transcribed
as intermediate (compare rows 1 and 2 of Table 1). For the first
set of models (stimuli in the top half of Figure 2), there was
also a significant effect of target, meaning that substitutions of
(clear or intermediate) [s] for /S/ were rated to be not as /s/-
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Adult /ʃ/

[ʃ] for /ʃ/

[ʃ] for /s/

[ʃ]:[s] for /ʃ/

[ʃ]:[s] for /s/

[s]:[ʃ] for /ʃ/
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[s] for /s/
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-0.0025 0.0000 0.0025 0.0050

First dimension of embedding

Figure 3: The first dimension of the image of sibilant fricative
productions under the Laplacian-eigenvector embedding, sep-
arated by target category for the adults (top and bottom rows)
and by target and transcription category for the children (other
rows). The large dots indicate the means of the subsamples.

like as “accurate” productions of (clear or intermediate) [s] for
target /s/ (see the values in the left half of row 3 of the table).
Finally, for both analyses, there was a significant interaction
(row 4 of the table). For the ratings of stimuli in the top half of
Figure 2, this means that the effect of target on the rating was
stronger for the tokens that were transcribed as clearly [s]. For
the analysis of the stimuli in the bottom half of the figure, this
means that ratings for stimuli that had been transcribed as more
or less clearly “accurate” productions of [S] for target /S/ were
more different from each other than the two types of transcribed
substitution of [S] for target /s/.

3.2. Acoustic features

Figure 3 shows the first dimension γ1 of the Laplacian-
eigenvector embedding. It is clear that γ1 provides a feature-
space within which the adults’ productions of target /s/ and /S/
are linearly separable independent of speaker. Conversely, the
γ1 values for the children’s productions are not linearly separa-
ble by target consonant. Hence, the Laplacian-eigenvector em-
bedding strikes a balance between separating adult community-
norm productions of the target fricatives, while also preserving
the greater amount of variation in the children’s productions.

To evaluate how well each acoustic feature predicted the
perceptual ratings, the mean proportional VAS score for each of
the children’s productions was logit-transformed and regressed
against a single predictor: peak frequency, centroid frequency,
or γ1. Because these acoustic features had different mean val-
ues and variances, each feature was centered and scaled by its
standard deviation before being entered as a predictor variable.
Table 2 lists the fitted slope coefficients and measures of good-
ness of fit for the three models. In each model, the acous-
tic feature significantly predicted logit-transformed VAS score
(|t| ≥ 22.76, p < 0.001). The learned feature γ1 better pre-

dicted the perceptual ratings, increasing adjusted R2 by 10.1%.

Table 2: Estimates (β̂) and t-statistics for acoustic-feature coef-
ficients; residual standard error (SEr), adjustedR2, and Akaike
information criteria (AIC) for associated linear models.

β̂ t SEr R2 AIC

peak −0.555 −22.76 0.950 0.254 4163.9
centroid −0.752 −36.57 0.802 0.468 3649.9
γ1 0.829 44.78 0.722 0.569 3330.0

4. Conclusions
This paper presented a method for learning acoustic features
for characterizing the /s/-vs.-/S/ contrast in young children. We
evaluated this feature and two traditional features, in terms of
how well they predicted adults’ VAS ratings of the children’s
productions, which had not been used to supervise the mapping
that yields the learned feature. Relative to centroid and peak
frequency, γ1 provided a better fit to the adults’ VAS ratings.

While γ1 outperformed the traditional features in predicting
the VAS ratings, it left more than 40% of variance unexplained.
The distributions for target /S/ and target /s/ in Figures 2 and 3
suggest an explanation. In Figure 2, the mean VAS ratings for
both targets cover the entire range from 0 to 1, with ratings for
[s]-for-/S/ substitutions falling in the same region as ratings for
correct /s/, and with ratings for [S]-for-/s/ substitutions falling
in the same region as ratings for correct /S/. By contrast, in
Figure 3, only the values for productions of target /S/ cover the
entire range of γ1 values between the adults’ categories; the
values for productions of target /s/ fall closer to adults’ /s/ re-
gardless of transcription category. This difference in distribu-
tion of γ1 values for the two consonants accords with previous
research. For example, the distribution of centroid values by
age in a cross-language study by Li [29] suggests that young
English-acquiring children’s sibilant fricative productions begin
as an “undifferentiated lingual gesture” [30] that is acoustically
more similar to adults’ /s/ than to adults’ /S/. The observed fre-
quencies for the transcription categories is also in keeping with
this suggested developmental path. That is, there are 287 sub-
stitutions of clear or intermediate [s] for /S/ as compared to 106
substitutions of clear or intermediate [S] for /s/. The distribu-
tion of mean VAS ratings across the transcription categories in
Figure 2, then, might indicate adults’ expectations about which
sibilant will be mastered first, with greater tolerance for devia-
tion from pronunciation norms for /S/.

Because the approach described herein maps spectra to a
low-dimensional representation, it is expected that the proce-
dure would successfully characterize other sets of phonemes
that differ primarily in terms of their place of articulation, which
is generally reflected in spectral shape.
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