Production of Stop Consonants by Children with Cochlear Implants & Children with Normal Hearing

Danielle Revai
University of Wisconsin - Madison
Normal Hearing (NH)

- **Who:**
 - Individuals with no HL

- **What:**
 - Acoustic signal
 - Typically functioning auditory system

Hearing Aid (HA)

- **Who:**
 - Individuals with no HL

- **What:**
 - Acoustic signal
 - Typically functioning auditory system

- **Pro:**
 - Amplified acoustic signal

- **Con:**
 - May not benefit individuals with profound HL

Cochlear Implant (CI)

- **Who:**
 - Mild – Profound HL

- **What:**
 - Electrical signal
 - Amplified acoustic signal

- **Pro:**
 - Replaces function of the cochlea when individual cannot benefit from a HA

- **Con:**
 - Degraded signal
 - Information is lost

Cochlear Implants (NIDCD); Smith (1975); Todd, Edwards, & Litovsky (2011)

www.overstock.com

www.samvednaclinic.com

social.rollins.edu
Current Literature

What we hear in the speech signal

1.) Temporal Contrasts
 - Differences in **timing**
 - Example: Distinguish between voiced and voiceless sounds - *time* vs. *dime*
 - Easy to distinguish, even for CI users

2.) Spectral Contrasts
 - Differences in **frequency** (Peak ERB)
 - Example: Distinguish between voiceless sounds - *tea* vs. *key*
 - Easy to distinguish with normal hearing, but degraded through a CI

Imperfections of Cochlear Implants

1.) Spectral Information is Lost
 - Difficult to distinguish sounds that differ by spectral, not temporal, contrasts

2.) Delay in Hearing Experience
 - Surgical procedure to receive CI
 - FDA approved at 12 months
 - Hearing age ≠ Chronological age

3.) Reduced Speech Intelligibility
 - Lack of listening and speaking experience
 - Increased need for early speech intervention
 - Heavily studied with “s” and “sh”

Giezen, Escudero, & Baker (2010); Peng, Spencer, & Tomblin (2004); Todd, Edwards, & Litovsky (2011)
Gaps in Current Literature

• Majority of research on fricatives: “s” and “sh”
 • Findings: Children with CIs produce “s” and “sh” differently and less intelligibly than their peers with normal hearing

• Lack of research on voiceless stops: “t” and “k”

Hewlett (1987); Todd, Edwards, & Litovsky (2011)
Why is this important?

• “t” and “k” are typically acquired early in the development of speech
 • Stops are typically developed earlier than fricatives

• Less speaking and listening experience due to time of implantation
 • Earliest implantation = 12 months

• IPA transcription is categorical
 • Acoustic analysis shows fine-grained differences

Hewlett (1987); Holliday et al. (2014); Tyler, Figurski & Langsdale (1993)
Robustness of Contrast (RoC)

More Robust

Less Robust

“k” “t”

ambiguous
Research Questions

• Based on our perception using IPA transcription, are children with cochlear implants less accurate at producing “t” and “k” than their age-matched peers with normal hearing?

• Do children with cochlear implants have a lower robustness of contrast between the sounds “t” and “k” than age-matched children with normal hearing?
Participants

64 children; Monolingual speakers of American English

<table>
<thead>
<tr>
<th></th>
<th>Males:Females</th>
<th>Age in months m(SD)</th>
<th>PPVT-4 m(SD)</th>
<th>Maternal Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochlear Implant n=32</td>
<td>14:18</td>
<td>47.5(9.2) range = 31-65</td>
<td>n = 32 91.63(23.1)</td>
<td>High = 25 Mid = 6 Low = 1</td>
</tr>
<tr>
<td>Normal Hearing n=32</td>
<td>16:16</td>
<td>47.6(9.2) range = 31-66</td>
<td>n = 22 116.86(14.3)</td>
<td>High = 25 Mid = 6 Low = 1</td>
</tr>
</tbody>
</table>
Procedure

- Picture Prompted Real Word Repetition Task

- Stimuli: 15-18 “t”-initial and “k”-initial words
 - Followed by front and back vowel contexts
 - “kitty” (front vowel)
 - “comb” (back vowel)
 - “teddy bear” (front vowel)
 - “tooth” (back vowel)
 - “keep” vs. “coop”

“tickle”
Coding: Transcription

“k” ambiguous “t”
Coding in Praat

Consonant: “t” Vowel

burst Stop:t
Data Analysis: Research Question #1

Based on our perception using IPA transcription, are children with cochlear implants less accurate at producing “t” and “k” than their age-matched peers with normal hearing?
Data Analysis: Research Question #1 (CA matches)

- **Back**
 - Target consonants: k, t
 - Accuracy levels: 0.00, 0.25, 0.50, 0.75, 1.00
 - Comparisons: CI vs. NH
 - Significant differences:
 - k: ***
 - t: ***

- **Front**
 - Target consonants: k, t
 - Accuracy levels: 0.00, 0.25, 0.50, 0.75, 1.00
 - Comparisons: CI vs. NH
 - Significant differences:
 - k: ***
 - t: **
Data Analysis: Research Question #2

Do children with cochlear implants have a lower robustness of contrast between the sounds “t” and “k” than age-matched children with normal hearing?

VS.
Robustness of Contrast
Robustness of Contrast

- Children with normal hearing have a significantly more robust contrast in front vowel contexts
Conclusions

• Based on IPA transcription, children with cochlear implants produced “t” and “k” significantly less accurately than their peers with normal hearing
 • Need for early intervention

• Based on acoustic analysis, children with cochlear implants produced a less robust contrast in front vowel contexts compared to children with normal hearing
 • Revealed fine-grained differences within productions that were perceived to be correct
 • Acoustic analysis supplements IPA transcription
Acknowledgments

Jan Edwards – Thesis Advisor; Principal Investigator of the Learning to Talk Research Lab
Allison Johnson – Ph.D. Student; Member of the Learning to Talk Research Lab
Pat Reidy – Post-Doctoral Associate in the Learning to Talk Research Lab
Members of the Learning to Talk Lab
Participants & Families

Research funded by:
Hilldale Undergraduate/Faculty Research Fellowship
Learning to Talk Grant from the National Institutes of Deafness and other Communication Disorders (NIH DC02932) – to Jan Edwards, Mary E. Beckman, and Benjamin Munson
Cochlear Implants. (2014, August 8). In National Institute on Deafness and Other Communication Disorders (NIDCD).

Thank You!